
Singleton To Sandwich
Chunking Into Buslets for Better System Development

Robert H. Hodges
Doctoral Student

Stevens Institute of Technology
Castle Point on Hudson

Hoboken, NJ 07030
robert.h.hodges@lmco.com

Mary A. Bone
Doctoral Student

Stevens Institute of Technology
Castle Point on Hudson

Hoboken, NJ 07030
mbone@stevens.edu

Robert J. Cloutier
Associate Professor

Stevens Institute of Technology
Castle Point on Hudson

Hoboken, NJ 07030
robert.cloutier@stevens.edu

Peter Korfiatis
Doctoral Student

Stevens Institute of Technology
Castle Point on Hudson

Hoboken, NJ 07030
pkorfiat@stevens.edu

Abstract - With the rising cost of developing increasingly
complex software intensive systems, improved strategies to
join together legacy systems are desirable. Connecting
black boxes not easily customized by the integrator
requires architectural innovation and new integration
practices. Middleware software solutions turn disparate
hardware systems into system of systems service oriented
architecture but there still needs to be a common
underlying service with a consistent data structure to the
overall system. This paper proposes an innovative
approach to transposing software subsystems into the
dominant flow down system engineering process used in
many large programs today, specifically; large legacy
bound architectures The paper suggest this can be
accomplished by creating a hybrid architecture pattern
from two established software patterns, singleton and
sandwich, which would allow users to phase in service
availability long before dominant system engineering
processes are completed.

Keywords: Service orientation, systems engineering,
buslet, chunk.

1 Introduction

Disney brought the World of Color (WoC) to the
already existing California Adventure Park in Southern
California in 2010. This 25 minute 3D show of light,
music, lasers, and water set to classic Disney music have
thrilled audiences of all ages and have met the high
expectations the Disney label brings. Said to cost about
$75 million, some of the subsystems comprising WoC
include:

 Nearly one full acre of engineered superstructure,
longer than a football field and capable of settling
on three levels – one for the performance, one
under the water surface and one for maintenance.

 More than 1,200 powerful and programmable
fountains.

 A vast underwater grid with more than 18,000
points of control. Each fountain has multiple
points of control for lighting, color intensity,
water angle, height and more.

 A precise system of flame projections, lasers, and
special effects that will flood the senses as guests
experience the animation.

 Nearly 30 high-definition projectors. [1]

Traditional content (the legacy) delivered with state of
the art fluid simulation tools created one of the most
complex symphonies of physical assets ever assembled.
Underneath, established technologies such as hydraulics,
computer controlled lighting and projection systems were
integrated piecemeal with motion picture computer
graphics tools. WoC’s development included concept,
storyboards, pre-visualization, technical R+D, animation,
fluid simulations, light, rendering and final integration of
all 3D elements. [2] Challenges faced included
management of 12 terabytes of legacy data and the
complexity of integrating a variety of technical systems. [3]

The data, syncrhonization of equipment,
communications, and systems thinking are required to
address availability, cost, and performance [4] to design
and implement the WoC are not unlike net centric
operations in the battlefield.

In today’s large scale integration space is comprised of
large legacy bound architectures limited by customer

Proc. of the 2011 6th International Conference on System of Systems Engineering, Albuquerque, New Mexico, USA - June 27-30,
2011

978-1-61284-782-5/11/$26.00 ©2011 IEEE 125

preference for a service oriented (SO) approach which
require the phasing in of system service availability long
before dominant system engineering processes are
completed. The approach described in this paper is aimed
at innovating existing system of systems engineering
processes to cut development time, bringing better value to
the customer and buying down risk to assure high level
technical readiness in SO system of systems. The authors
propose this can be accomplished through the application
and integration of traditional software patterns (the
singleton and the sandwich patterns) during systems
architecting.

SO implies systems characterized by publishing
information about resources available. SO participants can
request resources on demand for use but cannot modify
them. SO is an approach to building heterogeneous
distributed systems. Presented with a water gun, a Disney
WoC developer might envision a vapor screen showing
animated features, a fireman might envision a tool to put
out fires, and a child might envision hours of fun on a hot
day. The water gun is the service. Each independent user
of the water gun calls upon it as needed for a specific use,
but at the end of the day they do not change the essence of
the water gun (it takes in water and sprays it out at a higher
velocity). What changes is how the water gun is connected
to each user’s system. Service bus (SB) element is
important to mention as enablement for assimilating
systems. Red Hat’s Len Dimaggio, who offers a SB to link
SO applications on the software side states “one of the joys
of software development is the ease with which you can
create complex stuff out of thin air – or your own
imagination. Creating new software may satisfy a need that
could not otherwise be met. However, you can take
advantage of a standardized way of doing things, so that
you don’t have to start from scratch every single time”. [4]
SO is a style of architecture implemented with such
attributes as complexity. Accorging to Waldrop [6], the
design of a system with SO style is as complex as the
stakeholders needs for the system but “each of these
[sub]systems is a network of many ‘agents’ acting in
parallel . . . a complex adaptive system has many levels of
organization, with agents at any one level serving as the
building blocks for agents at a higher level. ”
Understanding where the complexities are and how to
minimize the implementation risk is explored.

System of Systems (SoS) modeling, using SysML and
a system engineering methodology has been well covered
and applied to a coalition maritime domain. [5] This paper
proposes an approach, based on practioner’s experience,
for integrating complex systems using patterns. Service
Oriented Architecture (SOA) has been previously
examined in literature using SE approaches. Lewis and
Smith explicitly lists an example of a SOA SoS beginning
with a pilot project. [6] Calinescu and Kwiatkowska

developed a SoS framework including the SOA
implementation of reconfigurable policy engines as web
services. [7] Sloane discussed the ubiquity of SOA and its
SoS complex interactions in DoD net-centric perspective
[8] and a SOA-enhanced US National Healthcare
Information Network in a complex SoS information
network. [9]

2 Singleton to Sandwich - Patterns in
Play

The concept proposed in this approach is to leverage
established architectural patterns and not “invent” a new
pattern without basis. It is informed by the author’s
observations over the past decade of successful and
unsuccessful SO influenced systems development. “A
dominant design incorporates a range of basic choices
about the design that are not revisited in every subsequent
design. . . once any dominant design is established, the
initial set of components is refined and elaborated, and
progress takes the shape of improvements in the
components within the framework of a stable architecture.”
[10] The goal of this approach is to propose
improvements on how SO systems are integrated. The
observations are independent of computing languages and
hardware specifications. Taking the enterprise as a whole,
SO architectural style principles can apply to systems
development. “An enterprise architecture for an
organization combines and relates all architectures
describing particular aspects of that organization.” [11]

The singleton architecture pattern is a dominant design
instantiation as described by Henderson [12]. However, it
is discussed here in a new light. The singleton architecture
pattern has roots in the software discipline but can be
applied equally well to system of systems design by
restricting the implementation of a subsystem to a singular
instantiation void of global state. This serves to act as a
good isolator of single purpose. For a SO architecture
type, systems of similar functionality that are constrained
by legacy tradition as was the case with the existing
lighting system around the California Adventure Park
where WoC was to be installed, the singleton can be used
to wrap the legacy systems and expose them through
software elements as services. Singleton architecture
patterns can lead to replication for system-wide resources
in the form of factory architecture patterns and command
architecture patterns.

The other architecture pattern to be examined in this
approach is the sandwich architecture pattern. The name
derives from imagining a SO architecture type system with
subsystems such as WoC water hydraulics control made
available on a bus (the lower piece of bread) to a middle
layer for connection and orchestration of business events
(this is the meat portion of the sandwich) topped by a layer

126

devoted to making services or systems available to
consumers (the upper piece of bread). Logically in
software, the lower layer is often shown as a SB while the
middle layer is typically shown in as a mix of business
logic built as components to insulate the service consumers
from the deployment of the service infrastructure. The
middle layer is where complexity engineering can be
applied with increasing success. Figure 1, the sandwich
pattern implies two SB layers but these are logical layers,
not physical instantiations.

Figure 1: Sandwich Architecture Pattern

Chunking is an approach to breaking something up
(software code, information, etc.) or partinioning it in a
way that the pieces are still related in some meaningful
way. For instance, the social security number is a 9 digit
number. However, it is normally chunked in a pattern of
three digits, two digits, and four digits in the form of 123-
45-6789 to facilitate memorization and recall. The
combining of singleton with sandwich architecture patterns
using SO chunking and buslet style SB components are at
the heart of the premise that large legacy bound
architectures can phase in service availability long before
dominant system engineering processes are completed.
Major middleware makers of the software version of a SB
called enterprise service bus (ESB) such as IBM, Oracle,
and Red Hat share a similar implementation premise:
Through configuration control one ESB can proxy one
wrapped SO web service at a time then later the ESBs can
be locked together. So-called “SO chunking” is the act of
wrapping individual SO type system elements controlling
specific hardware assets then connecting them to an
isolated ESB not connected to any other service endpoints.
Once connected, simple business logic and user experience
is binded to the chunked subsystem for control and
function prototyping and testing. The application (i.e.
driver) is then able to communicate as an exposed service
on a very limited singleton unit. Coining a new term, this
“buslet” will have minimal connection, eccentric data

constructs and no global state. The “buslet” will be able to
make its services available to the enterprise. This
approach leverages existing architecture patterns to create
“buslets” capable of stepwise integration maximizing
bottom up system integration. In doing so, a number of
buslets emerge as separate ESB pieces which if
implemented correctly can be connected into one SB. The
case where legacy systems are large pieces of a service
oriented system of systems (SoS), a new system
engineering process emerges.

The most important claim in this approach is that each
buslet designer, while needing to be mindful of particular
domains and persistent patterns from allocated system
capabilities, may move forward early on with the ardent
task of bottoms up integration.

Singleton buslets with SO chunking figure prominently
into the lower portion of the sandwich. At issue is the
resolve to combine buslets for the purpose of making
services available to the middle portion of the sandwich.
“Complexity rules of engagement subscribe to the notion
that systems with SO are complex systems in themselves –
a reflection of the problem and the solution domains” [13]
implying complexity engineering may be required to
assemble the variables, attributes and data structures. That
is a subject for further research.

At the same time singleton buslets are being built by
the system implementation team, a top down systems
engineering process is taking shape. Figure 2 shows the
starting singleton structure for chunking in the software
domain. The legacy application is glued into a SB using
one of many methods, and is supported by a SO
infrastructure (e.g. lightweight data bases, system
emulators, hardware), governed by a few policies, driven
by a limited workflow (enough to show functionality) and
driven by a simple user interface.

Figure 2. Singleton chunked SOA

Singleton buslets are not unlike singleton design
patterns for software development. In programming, the
purpose of singleton is to ensure an object will only have a

127

single instance. This results in a single point for access
from anywhere.

Once the buslets are formed, a network of service
availability can be discovered and connected using
common standards and protocols. As the systems
engineering process evolves, business logic and system
user interfaces can be programmed to tie mission
operations together using the buslets as building blocks.
This results in the chunked sandwich approach.

2.1 Consumer to Service Availability

Contributors to better life cycle performance include
ROI, risk reduction, and reuse over program phases. Risk
may be reduced when the tough integration problems are
solved up front. “A dominant design incorporates a range
of basic choices about the architecture that are not revisited
in every subsequent architecture. The initial set of
components is refined and elaborated and progress takes
the shape of improvements in the components within the
framework of a stable architecture.” [14] Stevens Institute
[15] suggests a process for systems engineering
development shown in Figure 3 however any number of
processes can be adapted to a particular domain. Note the
Stevens approach enables persistent patterns for phased
development so the phases avoid stagnation during
refactoring.

Figure 3. Systems Engineering Process

The relative improvement of ROI as the risk is
reduced and parts of the system begin to build can be
characterized by the chart shown in Figure 4. The ROI of a
large scale integration project is difficult to estimate during
the early phases simply because the long lead time of the
various reviews. As the chunks build, more reuse is
possible, the marginal risk reduces, and the
understandability factor begins to dominate. The ROI takes
a dramatic upturn once the systems engineering process
value is realized. Implicit knowledge is gained at each
phase of the project over the life cycle of the development.
More research is needed to specifically quantify Figure 4.

Figure 4 Life Cycle Chunking Effects

The classical testing solution to singleton architecture
pattern is to employ mutual exclusion principles. Unit
testing will be limited to ensuring the buslets have
available services. Without strong test cases built up from
unit tests and allocated Key Performance Parameters
(KPPs), the buslet development will quickly lose focus.

2.2 Challenges

This approach is not without challenge. Introducing
global state into a buslet as the services are integrated can
be unwelcome. Removing buslet locking to allow multi-
threaded context could be difficult and not conducive to
parallel processing. Refactoring the buslet as a means of
meeting KPPs could undermine the time saved. In the Java
programming language and in some systems development,
an executing program can examine itself and manipulate
internal properties of the program to reduce the need for
new refactoring.

Generalization of software architecture patterns for
systems use is fraught with issues including the relative
level of abstraction versus implementation blueprints. “The
architecture of a system. . . requires a higher level of
abstraction than necessary for the software that may be a
part of the system.” [16]

2.3 Implementing the Chunked Sandwich
Architecture Pattern

Disney treated WoC as a system of services, not as
an isolated show on the list of events. Disney worked
diligently with a number of innovative contractors to
ensure that all stages of the program were handled
seamlessly and without incidence. The resulting “magic” is
an excellent visitor experience through the chunking and
integration of their legacy film content into a newly
designed fluid dynamic system which was integrated into
their legacy theme park.

128

Motion Theory supervisor John Fragomeni was the
lead on the computer graphics (CG) for WoC. He recalls
that the new levels of fluid dynamics were required to
“attain the level of complexity and detail required to match
the sheer scale of the live show. The show has a complex
mixture of water tricks, ranging from traditional fountains,
background mist projection screens, and shafts of water
shot 150-200 feet in the air under extreme pressure, which
produced these fine mist streams that dissipate very
quickly”. [17] Each element of the physical system was
exposed to the CG as a service, enabling pipelines (or
workflows) to manipulate the services in various ways
during the duration of the show. To form the animated
characters out of water the water fountains needed to be
invisible compared to the projected lifelike icons.
Simulations, layered and rendered together, created the
final overall look for each character that was then
composed through business logic into segments of the
show. The role of Motion Theory is akin to the middle and
upper portions of the sandwich architecture pattern while
the projection, fountains, lights, etc were chunked into
singleton buslets for ease of binding as services. This
created the SO system. 150 simulations and a volume of
over 12 terabytes of data later, the modeled, rigged,
matched animated characters morphed into 3D feature
film.

3 Conclusions and Further Research

This paper explores the leveraging of existing
architecture patterns through better integration strategies to
reduce the time to market for systems based on SO
Architectures. The approach is to transpose system of
systems into the dominant flow down system engineering
process used in many large programs today, specifically;
large legacy bound architectures The paper discusses how
this might be accomplished by creating a hybrid
architecture pattern from two established system
architecture patterns: specifically, the singleton and
sandwich, which would allow users to phase in service
availability long before dominant system engineering
processes are completed.

Key to understanding how a chunked legacy system
can integrate seamlessly is the nascent research of
complexity. “The advancement and availability of robust
event-driven platforms provide an unique opportunity for
architects within mission-critical DoD systems to associate
high-volume temporal data with traditional operational IT
systems from the edge of the network at the points of force
projection and threat capture back to centralized
command locations.” [18]

Equally important is to consider building systems on
standard commercial baseline and not custom technology.

Data integration, some 12 terabytes in the 3D fluid
dynamics model of WoC, is important to consider.

“Addressing all possible security issues is complex,”
[19] according to Carlos Gutiererez. “Different issues need
to be considered from different perspectives. ” Gutierez
led a team to developed a model of SO security that should
be investigated further.

Other potential topics for consideration: 1) Build a
prototype and analyze the life cycle impact of this
proposed architectural approach. 2) Better understanding
the strain of new innovation technology investment on
established architecture disciplines.

References

[1] Disney, Inc., "Innovative Entertainment Technology
Drives ‘World of Color’ – the Next Milestone in
Expansion of Disney’s California Adventure,"
http://www.disneylandnews.com/press+releases/world+of+
color.htm, July 2009.

[2] Motion Theory,
http://www.motiontheory.com/work/disney-_world-of-
color, July 2009.

[3] Ibid., Motion Theory.

[4] Hodges, Robert H., “2010 Lockheed Martin Net
Centric Operations,” Lockheed Martin Connect 2010, pp.
5-6, October 2010.

[5] Len DiMaggio, “Adpapters for and ESB,” Red Hat
Magazine,
http://magazine.redhat.com/2008/05/22/adapters-for-an-
esb/, p. 1, May 2008.

[6] Waldrop, M. Mitchell, Complexity, The Emerging
Science at the Edge of Order and Chaos, Simon and
Schuster, New York, New York, 1992.

[7] Huynh, Thomas V., Osmundson, John S., “A Systems
Engineering Methodology for Analyzing Systems of
Systems Using the Systems Modeling Language (SysML),”
2nd Annual Conference on System of Systems Engineering
Center of Excellence, p. 7, 25 July 2006.

[8] Lewis, Grace A., Smith, Dennis B., “Four Pillars of
Service-Oriented Architecture,” CrossTalk Journal of
Defense Software Engineering, p. 10, September 2007.

[9] Calinescu, Radu, Kwiatkowska, Marta,” Software
Engineering Techniques for the Development of Systems
of Systems”, 15th Monterey Workshop on Foundation of
Computer Software , p. 3, September 2008.

129

[10] Sloane, Elliot, Way, Thomas, Gehlot, Vijay and
Beck, Robert, “Using hybrid SoSE approaches for
modeling and validating large scale Service Oriented
Architecture (SOA) System of Systems as nextgeneration
global military informatics platforms with Colored Petri
Nets (CPN) and Extend/MESA, ” Proceedings of the
Second IEEE International Systems of Systems
Engineering Conference, p. 1-2, April 2007.

[11] Sloane, Elliot, Way, Thomas, Gehlot, Vijay and
Beck, Robert, “Using SoSE Modeling and Simulation
Approaches to Evaluate the Potential Security,
Performance, and Limitations of a Next Generation US
National Healthcare Information Network (NHIN-2):
Simulating a Service Oriented Architecture (SOA) to
create an extensible, context aware, dynamic discovery
framework for robust, secure, flexible, safe, and reliable
healthcare information management,” Proceedings of the
1st IEEE Systems Conference, p. 3-4, April 2007.

[12] Henderson, Rebecca M., Clark, Kim B.,
“Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established
Firms,” Cornell University, p. 14,1990.

[13] Stojanovic, Zoran, and Ajantha Dahanayake,
"Chapter VII - Service-Oriented Enterprise Architecture,"
Service-Oriented Software System Engineering:
Challenges and Practices, IGI Global, 2005.

[14] Ibid., Henderson, p. 15.

[15] Ibid., Waldrop.

[16] Ibid., Henderson, p. 15.

[17] Cloutier, Robert. SD750 lecture notes, 2011.

[18] Cloutier, Robert, Applicability of Patterns to to
Architecting Complex Systems, VDM Verlag Dr. Mueller
Aktiengesellschaft & Co. KG, Saarbruecken, Germany,
2008.

[19] Motion Theory, “Disney ‘World of Color’,”
http://www.realflow.com/casestudies/cs_33worldcolor.php

[20] Bostrom, Peter, Chow, Linus, “Business Process
Management, Service-Oriented Architecture, and Web 2.0:
Business Transformation or Train Wreck?”, August 2008.

[21] Gutierrez, Carlos et al, Web Service Security
Development and Architecture: Theoretical and Practical
Issues, IGI Global, Hershey, Pennsylvania, 2010.

130

