
Exploring the Impact of Systems Architecture and Systems
Requirements on Systems Integration Complexity

Dr. Rashmi Jaini, Anithashree Chandrasekaran, George Elias, Dr. Robert Cloutier

Stevens Institute of Technology
Rashmi.Jain@stevens.edu, Anithashree.Chandrasekaran@stevens.edu, gelias@stevens.edu,

Robert.Cloutier@stevens.edu

Abstract
The need to perform faster systems

integration of complex systems require the
architect and design team understand how
the selected architecture and design
components will impact the system
integration processes complexity. System
integration process complexity is an
outcome of the interaction between degree
of feasibility and level of effort required to
understand, describe, implement, manage
and document the system integration process
for a given system development and
operational environment. This paper
analyzes the cause and effect relationships
between the system requirements,
architecture and the system integration
processes complexity. In order to address
systems integration issues upfront in the
design phase it is necessary to determine if
the architecture and design of components,
sub-systems, processes and interfaces
impacts (and to what extent) system
integration process complexity. This paper
also defines, and analyzes the impact of the
different system architecture and
requirements factors on system integration
process complexity. A research framework
is developed to understand the cause and
effect relationships between the system
requirements, architecture and integration
process. Finally, the paper proposes
recommendations based on the causality
results. These conclusions are based on
research undertaken by the authors on 8

development projects in the government
sector.
Keywords: System Architecture, System
Integration, Integration Complexity, System
Requirements

Introduction
It is necessary to determine if

integration of the defined physical elements
and interfaces in system architecture
contributes to system integration process
complexity. Today’s systems are usually
expected to function independently and in
cooperation with the existing systems
(system of systems). The cooperating
systems undergo frequent changes and
interoperability becomes a key factor and a
major contributor to system integration
process complexity. Interoperability is based
on the existence of the conceptual view
[Carney and Oberndoff, 2004]. The
conceptual view can be embodied in
requirements and architecture/design and the
system architecture determines the level of
interoperability. The system integration
process complexity includes interoperability.

The major focus of the paper is on
the cause and effect relationship between
system requirements, system architecture,
and system integration process complexity.
The paper is based on the research that
includes system engineering literature
reviews, study of industry best practices and
a survey of the system engineering leads for
eight different development projects in a
government organization. The research
methodology used for this study is provided

2

in Figure 1. This paper is organized in a
similar outline, first establishing the context
by defining and discussing system
integration process, and its complexity
classification. In order to understand,
analyze and prioritize the causal factors a
cause and effect relationship model was
developed and relevant attributes of good
requirements and architecture were
identified. These requirements and
architecture attributes define the activities
involved in these two critical phases and
enable a relatively simplified integration
process. Next, a set of activities/factors of
system requirements and system architecture

were selected. The selection of these
activities and factors were based on the
assumption that these activities contribute
towards better requirements and architecture
and would also reduce the system
integration process complexity, and improve
the quality of system verification and
validation. A survey was then developed to
verify and validate this. Finally, this paper
discusses a set of research questions and the
findings to further provide a meaningful
analysis of these relationships between
system requirements, architecture and
integration process complexity.

Research Methodology: Cause and Effect Relationship between SR, SA and SI Process Complexity

S
yn

th
es

is
 b

as
ed

on

 th
e

re
vi

ew
s

S
I p

ro
ce

ss

co
m

pl
ex

ity
 s

ur
ve

y
an

al
ys

is
 &

sy

nt
he

si
s

R
ev

ie
w

 o
f

Li
te

ra
tu

re
 &

In

du
st

ry
 b

es
t

pr
ac

tic
es Our research knowledge base in SI

models, methodologies and
approaches

Research Questions &
Survey Development Survey analysis

Identify significant factors of system
requirements and system architecture that
result in improving SI process & quality of

V&V

Research on system integration
process complexity

Research on factors of system
requirements and architecture that

impact SI process

Define SI process
complexity & its

classification

Identify the cause and effect relationships
between system requirements, architecture

and integration process complexity

Figure 1 Research Methodology

System Integration Process
Complexity

System integration (SI) process is
defined as a set of activities that transforms
the stakeholder requirements into an
operational system by unifying the process
components and product components while
ensuring compliance to the specified levels
of component operations and
interoperability/interdependence.

Systems integration is the process
that links the systems engineering life cycle
process from requirements to verification
and validation and ultimately
implementation of the system as shown in
the Figure 2. This linking process is also
called traceability, which is an integral
component of an effective systems
integration process.

The system architecture and design
is determined by the system requirements

3

which are originated and derived from the
stakeholder requirements. Requirements
specification involves translating system
requirements into a formal representation of
interrelated units. The output of this process
serves as a blueprint of the system which
guides and controls all the subsequent
development activities [Dogru, et.al, 1992].
The architecture and design decomposes and

allocates the system functionality into
components, sometimes referred to as
Hardware Configuration Items (HWCI) and
Computer Software Configuration Items
(CSCI), and defines the interfaces between
these configuration items. The complexity of
the systems integration process may be
determined by the functional and physical
decomposition of the system architecture.

As you create your architecture (design), you
determine the requirements allocation and trace
between the requirements and design

REQUIREMENTS FUNCTIONAL/PHYSICAL ARCHITECTURE

Input Reqts

Output Reqts

Processing Reqts

Non-Functional Reqts

S
Y
S
T
E
M

Input Reqts

Output Reqts

Processing Reqts

Non-Functional Reqts

S
Y
S
T
E
M

Input Reqts

Output Reqts

Processing Reqts

Non-Funct. Reqts

S
U
B
S
Y
S
T
E
M
1

Input Reqts

Output Reqts

Processing Reqts

Non-Funct. Reqts

S
U
B
S
Y
S
T
E
M
2

Input Reqts

Output Reqts

Processing Reqts

Non-Funct. Reqts

S
U
B
S
Y
S
T
E
M
1

Input Reqts

Output Reqts

Processing Reqts

Non-Funct. Reqts

S
U
B
S
Y
S
T
E
M
2

SubSystem 1

SubSystem 2

SubSystem 1

SubSystem 2

SubSystem 1

SubSystem 2

CSCI 1 Reqts
.
.

CSCI 1 Reqts
.
.

HWCI 1 Reqts
.
.

CSCI 1 Reqts
.
.

CSCI 1 Reqts
.
.

HWCI 1 Reqts
.
.

CSCI 1 – Application X

CSCI 2 – Application Y

HWCI 1 – Processor

CSCI 1 – Application X

CSCI 2 – Application Y

HWCI 1 – Processor

SystemSystemSystem

Systems IntegrationSystems Integration

Figure 2 System Integrationii

Figure 2 demonstrates the process by
which the functional architecture enables the
requirements to be traced and defined for
each of the configuration items that are a
part of the physical architecture. These
requirements form the basis for hardware
and software detail design and development.
Requirements are usually allocated to
functions (within the functional
architecture), that are performed by physical
elements. In [Rossak and Prasad, 1991]
Rossak and Prasad state that integration
architectures for system of systems serve as
a general pattern to define the basic layout
of an integrated system. The integration
architectures deal with the development of
new system parts and the post-facto
integration of already existing solutions by

providing strategy of system decomposition,
data storage, inter-process and user
communication

The importance of the system integration
process in the development of a system and
its successful implementation can be
understood and appreciated by
understanding and familiarizing with these
SI process activities. Despite the large
investments that are made, many integration
efforts fail for a number of technical,
organizational and management, and
migration planning reasons. The technical
issues include the following [Smith, et al.
2002]:

 Legacy systems originated from

4

unplanned, stovepipe development or
were developed as batch, single tier.

 Data is specific to the applications and
was not designed for sharing.

 The legacy systems were not initially
designed for new quality-attribute
requirements and are being affected by
needs for interoperability, performance,
security, and usability.

 The scope for the integration effort is not
adequately defined.

 Decisions are made without performing
adequate analyses (sometimes referred to
as “management by magazine”)

The exponential development and

growth of technology and increase in user
demands has resulted in increase of
complexity in the system integration and
development process. Complexity in this
context is the degree to which a system or
component has a design or implementation
that is difficult to understand and verify
[IEEE 610-12, 1990]. Complexity is also
defined as the degree of complication of a
system or system component, determined by
such factors as the number and intricacy of
interfaces, the number and intricacy of
conditional branches, the degree of nesting,
and the types of data structures [Evans and
Marciniak, 1987]. Any measurement of
process complexity requires measurement of
situation complexity, action complexity and
intention complexity. [Howard, et al. 2004]

We define

System Integration process complexity as
an outcome of the interaction between
degree of feasibility and level of effort
required to understand, describe,
implement, manage and document the
system integration process for a given
system development and operational
environment.
Some of the factors that impact the degree of
feasibility and the level of effort required to

understand, describe, implement, manage
and document the system integration process
activities are shown in Table 1. This list is
based on our system integration framework
and system integration process model (SIPM)
[Jain, et al. 2007a, 2007b].

Table 1 Factors that impact degree of
feasibility and level of effort required for
SI

Factors that impact

Degree of feasibility Level of effort required

Availability of the
integration (including
V&V) methodologies
and tools

Documentation of the
system requirements

Availability of the
required external and
internal interfaces

System Integration
Planning, Control and
Management

Scope of COTS
requirements (interface
and interoperability)

Documentation of
system integration
specifications (including
V&V)

Scope of legacy
requirements (interface
and interoperability)

Familiarity and
knowledge of the
integration (including
V&V) methodologies
and tools

Adherence to the
standards, regulations
and guidelines

Familiarity and
knowledge of the
required external and
internal interfaces

Planned programmatic
resources for the system
integration process

Knowledge of the system
constraints, context,
environment and scope

Level of performance
metrics to be supported

Specification of
performance metrics
(What, How, When to
measure? Who will
measure?)

Level of
operational/service
metrics to be supported

Specification of
operational/service
metrics (What, How,
When to measure? Who
will measure?)

5

Factors that impact

Degree of feasibility Level of effort required

 Degree of automation of
the SI process

 Number of dependencies
for SI process activities
(Degree of concurrency
of the SI process)

 Most of the research discussion on
system integration complexity is in the
context of the complexity associated with
the entire system. Currently, system
integration complexity is mainly focused on
the degree of testing required and interface
complexity. But there is a need to look at
system integration complexity from both the
process and product point of view in order to
ascertain associated risks in a
comprehensive manner. . To address these
aspects we classify system integration
process complexity as Technical,
Programmatic, Configuration, Operational,
and Organizational. This classification is
based on how the system lifecycle and the
development activities impact the system
integration process. These are described
below.

Technical complexity: The complexity of
system integration process due to the
required system capabilities and functions.
The major factors of technical complexity
are the integration technologies required to
achieve the system capabilities and
functions, feasibility and performance of the
interfaces, and strategies, methodologies and
tools for verification and validation of the
technical effectiveness of the system and its
sub-systems.
Programmatic complexity: Programmatic
complexity includes system integration
process complexity arising out of the
variance between the planned and available
resources needed to support the system
integration process over its lifecycle. The
major variances resulting in such

programmatic complexity are allocated
budget, cost associated with system
integration activities, schedule,
materials/equipments/tools, and skill sets.
Configuration complexity: The complexity
of system integration process due to the
inconsistencies and lack of control in the
development of process and product. The
major factors of configuration complexity
are the control and management of changes,
volatility and clarity of documentation and
specifications, integration baselines, and
integration personnel communication.
Operational complexity: This complexity
results from providing and supporting the
required level of operational support and
system availability. The system integration
operational complexity can be observed in
the required level of effort to integrate,
verify and validate the availability and
operational support of the system and its
sub-systems.
Organizational complexity: The complexity
of system integration process due to the
organizational strategy, compliance,
processes and product line. The major
factors of organizational complexity are
service level agreements of sub-systems and
interfaces, standards, regulations and
guidelines for system integration, and legacy
system integration.

Designing for integration
Most of the factors that result in SI

process complexity are external to the
context of system integration process. The
system integration processes and activities
receive most of its inputs, controls and
triggers from system requirements and
system architecture (Figure 3, Figure 4,
Figure 5). This highlights the direct cause
and effect relationship between the system
requirements, architecture and system
integration. System requirements and
architecture has a direct impact on system

6

integration.

System architecture also receives
inputs, triggers and controls from system
requirement activities. Hence there is a
mediating and moderating effect of system

architecture on system integration. System
architecture can play a direct causer or a
moderator or a mediator depending on the
system context, and concept.

Figure 3 Context Diagram for the Integration Process [SE Handbook, 2006]

Figure 4 Context Diagram for the Verification Process [SE Handbook, 2006]

Figure 5 Context Diagram for the Validation Process [SE Handbook, 2006]

The goodness of system architecture
and requirements can be defined by some
attributes. The attributes of a system or
architecture are important because they are
used to describe the properties of the system
or the system architecture in a unique
distinguishing manner [Elias and Jain,
2007]. System attributes are a key link
between good system architecture and the
system’s ultimate development cost and
schedule [McCabe and Pollen, 2004]. A
system attribute denotes a characteristic or
category of requirements commonly
demanded of systems. Recent work suggests
that system attributes offer an effective set
of perspectives to evaluate architectural
decisions and tradeoffs [Bass, 2003]. The set
of attributes shown in Figure 6 provides
standard guidelines for system requirements
and system architecture. By addressing some
of these attributes of system architecture and
requirements some of the significant system
integration issues can be contained and
controlled effectively resulting in a
relatively simplified system integration
process. A comprehensive list of attributes
of architecture can be obtained from SEI
Quality Measure Taxonomy [SEI, 2006],
[Clements, 2001], and [Elias and Jain,
2007].

An attribute is a “property or
characteristic of an entity that can be
distinguished quantitatively or qualitatively
by human or automated means [ISO/IEC
15939, 2002].” The attributes of a system or
an architecture are used to describe the
properties of the system or the SA in a
unique distinguishing manner. Because
attributes are measurable they are ideal for
describing and monitoring many systems
engineering tasks [ISO/IEC 15939, 2002].
The use of attributes to measure and
evaluate systems and systems architecture is
valuable in making decisions and tradeoffs
[Bass, 2003]. In this paper, we focus on
important attributes that contribute to
System Integration Complexity (SIC). By
understanding which attributes of SA affect
SIC one could use this information
throughout the requirements, architecting,
and development phases of the system
lifecycle.

SIC can be affected by multiple
factors. We are primarily concerned with
system architecture aspects that impact SIC
such as commonality, modularity, standards-
based, and reliability, maintainability, and
testability (RMT) as shown in Figure 6.

Integration Complexity

Commonality Modularity RMT Standards Based

1. Commonality in Hardware and
Software Subsystems

2. Percentage of Familiar
Technology

3. Operational Commonality

4. Physical Modularity
5. Functional Modularity
6. Orthogonality
7. Abstraction of System

Architecture

11. Interface Openness
12. Open System Orientation
13. Consistency Orientation

8. Required Level of
Reliability

9. Maintainability
10. Testability Factors

14. Clear Identification of the System Requirements
15. Prioritization of System Requirements
16. Feasibility Analysis for System Requirements
17. Risk Analysis for System Requirements
18. Categorization of System Requirements Based on

its Type

Requirements

Integration Complexity

Commonality Modularity RMT Standards Based

1. Commonality in Hardware and
Software Subsystems

2. Percentage of Familiar
Technology

3. Operational Commonality

4. Physical Modularity
5. Functional Modularity
6. Orthogonality
7. Abstraction of System

Architecture

11. Interface Openness
12. Open System Orientation
13. Consistency Orientation

8. Required Level of
Reliability

9. Maintainability
10. Testability Factors

14. Clear Identification of the System Requirements
15. Prioritization of System Requirements
16. Feasibility Analysis for System Requirements
17. Risk Analysis for System Requirements
18. Categorization of System Requirements Based on

its Type

Requirements

Figure 6 Architectural attributes that impact SIC

Commonality refers to the systems
design where a component or subsystem can
be used in more than one place in the
system. Commonality directly corresponds
to the degree to which components and
subsystems are reused within the system.
Commonality is highly related to reuse when
multiple systems have subsystems in
common. Reusability is the degree to which
a module, component, system or other work
product can be used more than once [IEEE
610-12, 1990]. Operational commonality has
to do with how close-related systems or
subsystems are operationally similar. This
directly affects the attributes of usability and
maintainability. Another aspect of
commonality is architecting with a view to
use familiar technology. Familiarity of
technology helps design more open and
flexible architectures. Factors that
negatively affect commonality are: the
number of unique Line Replacement Units
(LRU), number of unique fasteners, number
of unique cables, number of unique
standards implemented, number of unique

software packages implemented, number of
languages, number of compilers, average
number of software instantiations.

Modularity is the degree to which a
system is structured as a configuration of
smaller, self-contained units with well-
defined interfaces and interactions (i.e.,
independently testable), moderating design
complexity and enhancing its clarity, and
enabling design and functional flexibility
and variety for the system as a whole
[McCabe and Pollen, 2004], [Open Systems
Joint Task Force, 2005]. Modularity is
usually associated with open systems design,
but in this case we are considering open
systems design to be a design standard,
while modularity is a good design practice
on its own. Nevertheless, both of these
concepts are covered regardless of where
they are placed in this structure. Abstracting
the system architecture enables the architect
to review several alternative solutions before
choosing the one that will be implemented.
Differentiating the layers of functionality
and the structure that is required to support

9

through abstraction simplifies the choice in
many cases. Abstraction also facilitates
reusability and portability by preserving the
boundaries of the different layers [Jorgensen
and Philpott, 2002].

Standards based systems are
designed and architected based on open
standards. Open systems employ a system
design philosophy which provides for
interoperability and portability. In addition
to using an open systems approach, the
architecting or implementing organization
may choose to document their own design
standards. Organizational design standards
create consistency in the way systems are
architected and designed by an organization.
The downside to designing to standards is
that they may impose constraints that
become problematic in relation to
technology issues, or may not even be
possible in some cases. While designing to
standards may not always be possible or
desirable, it is always important to consider
design standards.

Reliability is often a very important
factor in the design of a system. Reliability
has two classic definitions that apply to
systems: 1) The duration or probability of
failure-free performance under stated
conditions, and 2) The probability that an
item can perform its intended function for a
specified interval under stated conditions.
(For non-redundant items, this is equivalent
to definition (1). For redundant items, this is
equivalent to mission reliability [MILSTD-
1388-1A, 1983].

Unfortunately, when systems are not
designed with maintainability in mind it is
usually left out. Maintainability is the ease
with which a software system or component
can be modified to correct faults, improve
performance, or other attributes, or adapt to
a changed environment [IEEE 610-12,
1990]. Methods to measure maintainability
are mean time to repair (MTTR), maximum
fault group size, etc.

Testability is the degree to which a
system or component facilitates the
establishment of test criteria and the
performance of tests to determine whether
those criteria have been met [IEEE 610-12,
1990]. Examples of issues that affect
testability: number of LRUs covered by BIT
(Built In Test), logging/recording capability,
ability to create system state at time of
system failure, online testing, ability to be
operational during external testing, ease of
access to external test points, automated
input/stimulation insertion).

Requirements are the life-blood of
systems development. Every man-made
system starts with requirements regardless
of whether they are implicit, explicit, good
or bad. The first phase of the systems
engineering process is driven by collecting,
composing and analyzing systems
requirements. These requirements drive the
success or failure of the system throughout
the lifecycle. The decisions made through
detailed design commit approximately 80%
of the cost of the system [Buede, 2000].
Therefore, requirements are a very important
driver of the systems engineering process
and require substantial attention.
Requirements that are generated as a result
of stakeholder concerns, and written in the
context of the key attributes about to be
listed, increase that likelihood of system
success.

Based on our research, we identified
the following 18 activities that characterize
the impact of system requirements and
architecture related attributes on systems
integration complexity.
1. Commonality in hardware and software

subsystems (such as number of unique
Line Replacement Units (LRU), number
of unique fasteners, number of unique
cables, number of unique standards
implemented, number of unique
software packages implemented, number
of languages, number of compilers,

10

average number of software
instantiations)

2. Percentage of familiar technology used
in the system of interest

3. Operational commonality (such as
percentage of operational functions
automated, number of unique Skill codes
required, estimated operational training
time, estimated maintenance training
time)

4. Physical modularity (such as ease of
system element upgrade, ease of
operating system upgrade)

5. Functional modularity (such as ease of
adding new functionality, ease of
upgrade existing functionality)

6. Orthogonality (examples are functional
requirements fragmented across multiple
processing elements and interfaces,
throughput requirements across
interfaces, common specifications
identified)

7. Abstraction of system architecture
8. Required level of reliability (factors such

as fault tolerance, percentage of system
loading (processor loading, memory
loading, network loading, etc…))

9. Maintainability in terms of expected
MTTR (mean time to repair), maximum
fault group size, accessibility and
required system operational during
maintenance

10. Testability factors (Examples: number of
LRUs covered by BIT (BIT Coverage),
reproducibility of errors,
logging/recording capability, ability to
create system state at time of system
failure, online testing, ability to be
operational during external testing, ease
of access to external test points,
automated input/stimulation insertion)

11. Interface openness (such as number of
Interface Standards/Interfaces, multiple
vendors, multiple business domains,
standard maturity)

12. Open system orientation (hardware and
software standards)

13. Consistency orientation (common
guidelines for implementing diagnostics
and performance monitoring and fault
localization)

14. Clear identification of the system
requirements (uniquely identified (i.e.,
number, name tag, mnemonic,
hypertext) and reflect linkages and
relationships)

15. Prioritization of system requirements
(based on stakeholders’ input and
criticality analysis)

16. Feasibility analysis for system
requirements

17. Risk analysis of system requirements
18. Categorization of system requirements

based on its type (such as input, output,
reliability, availability, security,
environmental, performance, interface,
testing)

Some of the significant sources of
the causality analysis include [Verma and
Johannesen, 2000], Architecture Tradeoffs
Analysis Method (SEI ATAM), IBM
Architecture Evaluation Methodology (IBM
AEM), [Bachmann, et al. 2000],
[Bachmann, et al. 2002], [Kazman, et al.
2003], [Bachmann, et al. 2003], [IEEE 1233,
1998], [IEEE 830, 1998], INCOSE SE
Handbook v3 [SE Handbook, 2006]. These
system architecture and requirements
activities when implemented can result in
certain clearly observable patterns in system
architecture and requirements [Cloutier,
2006], [Cloutier and Verma, 2007]. By
studying and mining similar systems,
common patterns are found that go well
beyond software patterns in common use
today. These patterns can form the basis for
entire subsystems of a complex system. The
Perform C2 (command and control) is an
example of such a pattern [Cloutier and
Verma, 2006]. In this system architecture
pattern, the smaller plan, detect, control,

11

and engage patterns are assembled into a
pattern language called Perform C2. One of
the motivators documented for the use of
system patterns is the value of managing
complexity. When a pattern such as the
Perform C2 is implemented and integrated
into a system, the integration complexities
are better understood, and can be leverage in
subsequent implementation and integration
efforts if the same pattern is used again. The
same can be said for patterns that evolve
when developing embedded system in
compatible languages or common platform,

using fasteners of the same specification
within and among the subsystems.

Each of the identified system
requirements and architecture activity and
factor help address at least one category of
system integration process complexity. The
impact of these activities on the complexity
category is a result of the dependencies
between the complexity factors and the
activities. A mapping was created to provide
an overview of how each activity/factor
impact the system integration process
complexity categories. The mapping is
shown in Table 2.

Table 2 System Architecture and Requirements Cause and Effect on System Integration
Process Complexity

System Architecture and
Requirements Factors

Technical
complexity

Programmatic
complexity

Configuration
complexity

Operational
complexity

Organizational
complexity

Commonality in hardware and
software subsystems X
Percentage of familiar
technology X X X
Operational commonality X X X
Physical modularity X
Functional modularity X
Orthogonality X X
Abstraction of system
architecture X X X
Required level of reliability X
Required level of
maintainability X
Testability X
Interface openness X X
Open system orientation X X X
Consistency orientation X X
Clear identification of the
system requirements X X X X
Prioritization of system
requirements X X
System requirements feasibility
analysis X X X
System requirements risk
analysis X X X X
Categorization of system
requirements X X X X X

Formulating hypothetical SI
complexity causal relationships

Through the course of this work,
research questions were constructed to assist
in the understanding of how and to what
extent the identified system architecture and
requirements factors impact the system
integration process. By analyzing these
research questions we arrive at some
recommended practices to handle the cause
and effect relationship between system
architecture and requirements that would
simplify the system integration process and
reduce the dependencies between these
development phases. Addressing some of
the system integration issues during the
system requirements and architecture phase
provides a strong foundation for the
integration phase and help manage the
associated criticality of these issues. When
the foundation for the system integration
activities and processes is initiated early in
the lifecycle, feedback and iterations during
development helps to refine and improve
system integration strategies, planning and
quality.

The two factors (dependent
variables) considered for this research study
were the system integration complexity
(system integration process complexity) and
quality of system verification and validation
(V&V). The most important phase of system
integration is the system verification and
validation. V&V are the phases of system
engineering where the required functionality
comes together with all the interfaces
completed. Hence studying the quality of
V&V along with the SI complexity is
important and provides a comprehensive
view of system integration. The independent
variables are the system architecture and
requirements factors discussed in the
previous section. We formed the following
research questions to understand the cause
and effect relationships between system

architecture and requirements with system
integration process complexity.

1. Null Hypothesis: There is a cause and

effect relationship between system
requirements, system architecture and
system integration process complexity.

2. Null Hypothesis: There is a cause and
effect relationship between system
requirements, system architecture and
quality of V & V.

3. What are the three most important
factors of system requirements and
architecture that could reduce system
integration complexity?

4. What are the three most important
factors of system requirements and
architecture that could improve quality
of system verification and validation?

5. Does system architecture impact the
complexity of system integration?
Hypothesis: System architecture
improvements can reduce system
integration complexity.

6. What are the three most important
architectural factors for system
integration complexity?

7. Does system architecture impact the
quality of system verification and
validation? Hypothesis: System
architecture improvements can improve
the quality of system verification and
validation.

8. What are the three most important
architectural factors for quality of
verification and validation?

9. Does the level system reliability and
maintainability impact the complexity of
system integration and the quality of
verification and validation? Hypothesis:
Higher levels of reliability and
maintainability in system design reduce
the complexity of system integration and
increase the quality of verification and
validation.

13

10. Does an improved requirement
engineering process results in reduced
system integration complexity and better
quality of verification and validation?

11. Does familiarity of technology lead to
reduced system integration complexity
and better quality of verification and
validation?

A survey questionnaire addressing each of
these identified system architecture and
requirements factors was developed. The
survey questions are designed to verify if
there is a cause and effect relationship
between each of the identified 18 factors on
system integration complexity and quality of
system verification and validation and also
measure their impacts. The survey questions
were also designed to capture the comments
(thoughts and inputs) of the participants on
each of these 36 cause-and-effect
relationships. The questionnaire with 36

questions was piloted to the SE personnel at
a government organization to obtain their
feedback on the survey clarity and
terminologies used. After the completion of
the pilot, data was collected on 8 different
development projects. The survey responses
are shown in Table 3, and Table 4. The
impact of the causal factors of requirements
engineering on system integration
complexity is shown in Figure 7, and Figure
8. The impact of the causal factors of system
architecture on system integration
complexity is shown in Figure 9, and Figure
10. The impact of the causal factors of
requirements engineering on quality of
verification and validation is shown in
Figure 11, and Figure 12. The impact of the
causal factors of system architecture on
quality of verification and validation is
shown in Figure 13, and Figure 14.

Table 3 System Integration Process Complexity: Survey Results

Partially Moderately Significantly Exceptionally

1 Categorization of system requirements
based on its type

25 13 50 0 13

2 Clear identification of the system
requirements

0 0 38 25 38

3 Commonality in hardware and software
subsystems

0 0 63 25 13

4 Decrease in abstraction of the system
architecture

67 17 17 0 0

5 Decrease in expected maintainability 71 14 14 0 0
6 Decrease in interface openness 29 29 14 29 0
7 Decrease in level of required reliability 43 29 14 14 0
8 Decrease in orthogonality 0 14 29 57 0
9 Decrease in testability factors 33 17 33 17 0
10 Increase in consistency orientation 0 29 43 29 0
11 Increase in functional modularity 0 0 43 43 14
12 Increase in open system orientation 25 25 13 38 0
13 Increase in operational commonality 13 25 50 13 0
14 Increase in percentage of familiar

technology
13 13 25 50 0

15 Increase in physical modularity 0 0 57 29 14
16 Prioritization of system requirements 0 13 38 25 25
17 System requirement feasibility analysis 25 13 38 13 13
18 System requirement risk analysis 13 13 38 25 13

Improved (%)Not
Improved

(%)

SI is improved as a result of#

Improvement in SI as a result of Requirements Engineering

0%
20%
40%
60%
80%

100%

C
at

eg
or

iz
at

io
n

of
re

qu
ire

m
en

ts

C
le

ar
id

en
tif

ic
at

io
n

of
re

qu
ire

m
en

ts

Pr
io

rit
iz

at
io

n
of

re
qu

ire
m

en
ts

R
eq

ui
re

m
en

t
fe

as
ib

ili
ty

an
al

ys
is

R
eq

ui
re

m
en

t
ris

k
an

al
ys

is

Requirements Engineering

SI

Improved
Exceptionally
Improved
Signif icantly
Improved
Moderately
Improved Partially

Not Improved

Figure 7 SI process improvements based on specific Requirements Engineering activities

Improvement of SI Process
(complexity) as

a result of Requirements
Engineering

22%

45%

33%
Not Improved

Moderate
Improvements

Significant
Improvements

Figure 8 SI process improvements based
on Requirements Engineering

SI complexity as
a result of System Architecture

37%

39%

24% Not Improved

Moderate
Improvements

Significant
Improvements

Figure 9 SI process improvements based
on System Architecture

Improvement in SI as a result of System Architecture

0%

20%

40%

60%

80%

100%

Co
m

m
on

al
ity

in
 h

ar
dw

ar
e

an
d

so
ftw

ar
e

D
ec

re
as

e
in

ab
str

ac
tio

n
of

ar
ch

ite
ct

ur
e

D
ec

re
as

e
in

ex
pe

ct
ed

m
ai

nt
ai

na
bi

lit
y

D
ec

re
as

e
in

in
te

rf
ac

e
op

en
ne

ss

D
ec

re
as

e
in

le
ve

l o
f

re
qu

ire
d

D
ec

re
as

e
in

or
th

og
on

al
ity

D
ec

re
as

e
in

te
sta

bi
lit

y
fa

ct
or

s

In
cr

ea
se

 in
co

ns
ist

en
cy

or
ie

nt
at

io
n

In
cr

ea
se

 in
fu

nc
tio

na
l

m
od

ul
ar

ity

In
cr

ea
se

 in
op

en
 sy

ste
m

or
ie

nt
at

io
n

In
cr

ea
se

 in
op

er
at

io
na

l
co

m
m

on
al

ity

In
cr

ea
se

 in
pe

rc
en

ta
ge

 o
f

fa
m

ili
ar

In
cr

ea
se

 in
ph

ys
ic

al
m

od
ul

ar
ity

Architecture

SI

Figure 10 SI process improvements based on specific System Architecture activities [Legend
same as Figure 7]

Table 4 Quality of Verification and Validation: Survey Results

Partially Moderately Significantly Exceptionally

1 Categorization of system requirements based on
its type

25 13 38 13 13

2 Clear identification of the system requirements 0 0 38 25 38
3 Commonality in hardware and software

subsystems
0 0 75 25 0

4 Decrease in abstraction of the system architecture 50 33 0 0 17

5 Decrease in expected maintainability 43 29 14 0 14
6 Decrease in interface openness 33 17 33 17 0
7 Decrease in level of required reliability 43 14 14 14 14
8 Decrease in orthogonality 17 0 17 50 17
9 Decrease in testability factors 33 0 50 0 17
10 Increase in consistency orientation 14 29 29 29 0
11 Increase in functional modularity 17 17 33 17 17
12 Increase in open system orientation 25 38 13 25 0
13 Increase in operational commonality 0 13 50 25 13
14 Increase in percentage of familiar technology 13 13 38 25 13
15 Increase in physical modularity 0 17 33 17 33
17 Prioritization of system requirements 13 25 25 13 25
18 System requirement feasibility analysis 25 25 25 25 0

Improved (%)Verification and Validation is
improved as a result of

Not
Improved

(%)

#

Quality of V&V as a result of Requirements Engineering

0%
20%
40%
60%
80%

100%

C
at

eg
or

iz
at

io
n

of
re

qu
ire

m
en

ts

C
le

ar
id

en
tif

ic
at

io
n

of
re

qu
ire

m
en

ts

Pr
io

rit
iz

at
io

n
of

re
qu

ire
m

en
ts

R
eq

ui
re

m
en

t
fe

as
ib

ili
ty

an
al

ys
is

R
eq

ui
re

m
en

t
ris

k
an

al
ys

is

Requirements Engineering

Q
ua

lit
y

of
 V

&
V Improved

Exceptionally
Improved
Signif icantly
Improved
Moderately
Improved Partially

Not Improved

Figure 11 V&V quality improvements based on specific Requirements Engineering
activities

Quality of V&V as
a result of Requirements

Engineering

26%

44%

30%
Not Improved

Moderate
Improvements

Significant
Improvements

Figure 12 V&V quality improvements
based on Requirements Engineering

Quality of V&V as
a result of System Architecture

36%

39%

25% Not Improved

Moderate
Improvements

Significant
Improvements

Figure 13 V&V quality improvements

based on System Architecture

Quality of V&V as a result of System Architecture

0%

20%

40%

60%

80%

100%

Common
ali

ty in
 ha

rdw
are

 an
d s

oftw
are

 su
bsyste

ms

Decr
eas

e i
n ab

str
act

ion
 of a

rch
ite

ctu
re

Decr
eas

e i
n ex

pec
ted

 m
ain

tai
nabi

lity

Decr
eas

e i
n in

ter
fac

e o
pennes

s

Decr
eas

e i
n lev

el o
f re

qu
ire

d r
eli

abilit
y

Decr
eas

e i
n orth

ogo
nal

ity

Decr
eas

e i
n tes

tab
ilit

y fa
cto

rs

Inc
rea

se
in co

nsis
ten

cy or
ien

tat
ion

Inc
rea

se
in fu

nct
ional

 m
od

ula
rity

Inc
rea

se
in op

en
syste

m orie
ntat

ion

Inc
rea

se
in op

era
tio

nal
 co

mmonal
ity

Inc
rea

se
in pe

rce
nta

ge
of fa

milia
r te

chno
logy

Inc
rea

se
in ph

ysi
cal

 m
od

ula
rity

System Architecture

Q
ua

lit
y

of
 V

&
V

Figure 14 V&V quality improvements based on specific System Architecture activities

[Legend same as Figure 11]

Significant Cause and Effect
Relationships

The results of the survey were
analyzed based on the research questions.
The following sections provide a

consolidated view of this analysis and
synthesis. The significant cause and effect
relationships between system requirements,
system architecture, integration process
complexity, and quality of V&V are shown

17

in the fishbone charts shown in Figure 15
and Figure 16.

Figure 15 Major Factors Impacting SI process complexity

Figure 16 Major Factors Impacting Quality of System Verification & Validation

Impacts of Requirements Engineering on
SIC and Quality of V&V

The results of the survey confirmed
the belief that an improved requirement
engineering (RE) process results in reduced
system integration complexity and a higher
quality requirements verification and
validation. The improved RE process will
result in significant improvements by
reducing system integration complexity and
improving the quality of V&V. The
significant system requirements factors that
result in reducing the system integration

complexity and in improving the quality of
verification and validation are discussed
below.
Clear identification of system requirements:

There has been a good amount of
research and improvements in the field of
requirements engineering. The major focus
area of these research, methods and tools is
the ambiguity and volatility associated with
the system requirements. Subject + Verb +
Modifier format is commonly used for clear
system requirements. Traceability and
testability of requirements have to be

18

concentrated during requirements elicitation
and analysis. A number of tools on the
market today help system engineers trace
requirements and specify the associated test
requirements. But the traceability in most of
these tools ends during the requirements
phase. Even though there is a good
traceability between the originating and
derived requirements, the benefits are
limited when there is no traceability across
all phases of development. Stakeholder
involvement throughout the system
development is a key to identify clear
system requirements and transition them
effectively across the system lifecycle.

By performing this activity the
system capabilities and functions can be
clearly identified. This activity impacts
every phase of system integration (derive
integration requirements, develop
integration architecture, plan integration,
implement based on the architecture and
plan, and verify and validate the system and
its interfaces) and significantly impacts the
technical complexity of integration. By
identifying clear requirements, the cost
overruns and schedule slippage can be
avoided due to the requirements ambiguity.
 Therefore, requirements traceability
also impacts programmatic complexity. By
identifying clear operational support and
availability requirements and other
constraining requirements the risks
associated feasibility and effort required can
be analyzed up in the lifecycle and can be
mitigated. The result is lower integration
operational complexity and organizational
complexity.
Prioritization of system requirements:

During system development
concentrating on value added activities is
very important. In order to provide the value
added activities the system requirements
need to be prioritized earlier in the lifecycle.
One of the key success criteria for
evolutionary or iterative development is

prioritization of system requirements. The
effort required for integration, verification
and validation can be planned and executed
effectively by performing this activity early
in the lifecycle with stakeholder
participation. By prioritizing and
concentrating on core functionalities/
capabilities first and building upon them can
also help in configuration management. This
activity helps reduce both the technical and
configuration complexity of integration.

Impacts of Systems Architecture on SIC
and Quality of V&V

The results of the survey suggest that
there will be a significant improvement in
the system integration complexity and the
quality of V&V by adopting some of the
suggested system architecture practices.
Current systems engineering researchers
focus on architectures that are integration
friendly. The mode of system development
has shifted away from being manufacturing-
centric to being integration-centric due to
the fact that use significant percentage of
COTS, strategic outsourcing, value based
capabilities development, and need for
supply chain excellence. Another
architecture trend is the migration toward
service oriented architectures (Service
Oriented Architectures focused around
supportability of operational scenarios) and
event driven architecture which are even
more integration friendly [Kumar, et. al.,
2005], [Krishnamoorthy, et. al., 2005] The
factors of system integration process
complexity are addressed earlier in the
lifecycle and addressed as a part of the
architecture by adopting these integration
friendly architecture methodologies. Some
of the system architecture factors that impact
system integration process complexity
evolve when these architecture
methodologies are adopted. Future research
based on these research findings has been
proposed at Stevens Institute of

19

Technology, and should result in practices,
methods, and tools that will aid in creating
system architectures which utilize patterns at
the system and subsystem levels, and
displaying high degrees of modularity.

Good architecture should exhibit
characteristics such as Time Sensitivity,
Context Sensitivity, and Stakeholder
Sensitivity. Based on the survey results the
factors of system architecture that impacted
system integration process complexity and
quality of system verification and validation
the most and results in at least partial
improvement are

Commonality in hardware and
software subsystems: This system
architecture factor emerged to be an
important factor impacting both system
integration process complexity and quality
of system verification and validation.
Commonality in subsystems helps reduce
the effort required for integration,
verification and validation. The degree of
unique interfaces, platforms, technology
used, and protocols are reduced resulting
familiarity of subsystems. This reduces the
technical complexity associated with system
integration process.

Increase in physical modularity:
Quality of verification and validation can
have at least moderate improvements and
System integration process complexity can
be at least partially reduced by increasing
the physical modularity in system
architecture. The physical and functional
modularity in architecture facilitates both
modernization and replacements of legacy
systems. This significantly reduces the
complexity associated with the legacy
system integration. Modularity also results
in higher levels of maintainability and
support. This reduces the technical
complexity associated with system
integration process.

Increase in functional modularity:
System integration complexity can be

reduced significantly by increasing
functional modularity in system architecture.
The increase in functional modularity in
system architecture is a major contributor to
rapidity in system development by adding
ease of building upon or upgrading the
existing functionalities. This factor is a key
in evolutionary and iterative system
developments. The risk associated with
system architecture during rapid system
development would also be reduced by
addressing functional modularity. This
reduces the technical complexity associated
with system integration process.

Increase in operational commonality:
Quality of verification and validation can be
improved significantly by increasing the
operational commonality. Commonality is
the extent to which the system is made up of
common hardware and software
components, utilizes familiar technologies,
and is automated reducing the effort of
training and maintenance. Operational
commonality in system architecture results
in operational requirements that can be
easily verified and validated. Automation
also reduces the effort involved in V&V.

Decrease in orthogonality: This
factor of system architecture results in
improvements in both quality of verification
and validation and system integration
process complexity. Orthogonality of system
architecture can be reduced by performing
one-to-one functional mapping. This factor
reduces both the technical and configuration
complexities of system integration process.

Increase in percentage of familiar
technology: By having familiar technologies
in system architecture quality of V&V and
system integration process can be improved
moderately. This can be achieved by
adopting good product line architectures and
nested layer architecture. This factor reduces
the programmatic and configuration
complexities of system integration process.

20

Functional modularity as a
characteristic of system architecture plays an
important role in reducing system
integration complexity. However, it does not
seem to improve system verification and
validation. Also we can observe that
operational commonality plays an important
role in improving system verification and
validation but not in reducing system
integration complexity. These differences
could be attributed to the nature of the tasks
involved in system integration and system
verification and validation. Modularity is the
extent to which the system is made up of
well defined, functionally non-overlapping,
modular elements with well documented
interfaces allowing updates to or
replacements of a portion of the system
without affecting the remainder of the
system. Functional modularity in system
architecture results in standard functional
requirements fragmented across multiple
processing elements and interfaces. It also
enables adding new functionality with
minimum disruption. By doing so system
integration is simplified.

The results also indicate that the
most of the factors that impact system
integration complexity also impact quality
of system verification and validation. By
adopting these activities in system
requirements and architecture critical issues
of system development are addressed early
in the lifecycle. This provides more
bandwidth for mitigating the risks associated
with these issues. By doing so adverse
consequences of these risks are understood
and addressed resulting in a more likely
successful system development and
operation. Normally there are no system
operational effectiveness and total cost of
ownership tradeoffs being performed during
these activities. Therefore, one might decide
there is no need to perform optimization of
system operational effectiveness and total
cost of ownership when adopting these

activities. However, the results presented in
this paper indicate these activities could
result in reduced total cost of ownership and
improved system operational effectiveness.

Summary
The specific nature of application-

domain plays a critical role in the impact of
the system architecture and system
requirements related factors on system
integration process complexity. The findings
of this study were based on the survey of
one government organization. They indicate
that attention to key architecture and
requirements attributes during the early
development activities can have significant
impact during systems integration, while
resulting in reduced systems integration
complexity. Further research to extend the
study across domains and industry sectors is
required to generalize the findings.

References
1. Bachmann, F., Bass, L., Chastek, G.,

Donohoe, P., Peruzzi, F., “The
Architecture Based Design Method”,
Software Engineering Institute, Carnegie
Mellon University (SEI-CMU), 2000.

2. Bachmann, F., Bass, L., Klein, M.,
“Deriving Architectural Tactics: A Step
Toward Methodical Architectural Design”,
SEI-CMU, 2003.

3. Bachmann, F., Bass, L., Klein, M.,
“Illuminating the Fundamental
Contributors to Software Architecture
Quality”, SEI-CMU, 2002.

4. Bass, L., Clements, P., Kazman, R.,
“Software Architecture in Practice”,
Addison-Wesley, 2003.

5. Buede, D., “The Engineering Design
of Systems”, Wiley Series in Systems
Engineering, 2000.

6. Carney, D., Oberndoff, P.,
“Integration and Interoperability Models
for System of Systems”, Carnegie Mellon
University, 2004.

7. Clements, P., Kazman, R., Klein, M.,
“Evaluating Software Architectures:

21

Methods and Case Studies”, Addison-
Wesley, 2001.

8. Cloutier, R., “Applicability of
Patterns to Architecting Complex
Systems”, Doctoral Dissertation, Stevens
Institute of Technology, 2006.

9. Cloutier, R., Verma, D., “Applying
Pattern Concepts to Systems (Enterprise)
Architecture”, Journal of Enterprise
Architecture, May 2006.

10. Cloutier, R., Verma, D., “Applying
the concept of patterns to systems
architecture”, Systems Engineering 10(2):
138-154, 2007.

11. Dogru A., Delcambr, S., Bayrak, C.,
Christiansen, M., Tanik, M., “The
development of an integrated system
design environment”, Proceedings of the
second international conference on systems
integration, ICSI, 1992, pp. 691-698.

12. Elias, G., Jain, R., “Exploring
Attributes for Systems Architecture
Evaluation”, CSER, 2007.

13. Evans, M. W., Marciniak, J.,
“Software Quality Assurance and
Management”, John Wiley & Sons, 1987.

14. Howard, N., Rolland, C., Qusaibaty,
A., “Process complexity: Towards a theory
of intent-oriented process design”, INFOS,
2004.

15. IEEE 1233, “IEEE guide for
developing system requirements
specifications”, IEEE, 1998.

16. IEEE 610-12, “IEEE Standard
Glossary of Software Engineering
Terminology”, IEEE Computer Society,
1990.

17. IEEE 830, “IEEE recommended
practice for software requirements
specifications”, IEEE, 1998.

18. ISO/IEC 15939, “Software
engineering – Software Measurement
Process”, 2002.

19. Jain, R., Chandrasekaran, A., Erol,
O., “A System Integration Process Model
(SIPM)”, Working Paper, Stevens Institute

of Technology, 2007a.
20. Jain R., Erol, O., Chandrasekaran,

A., “Proposing a System Integration
Readiness Framework”, Working Paper,
Stevens Institute of Technology, 2007b.

21. Jorgensen, R., Philpott, I.,
“Architectural Abstractions”, INCOSE
Symposium, 2002.

22. Kazman, R.., Nord, R.., Klein, M.,
“A Life-Cycle View of Architecture
Analysis and Design Methods”, SEI-CMU,
2003.

23. Krishnamoorthy, V., Unni, N.K.,
Niranjan, V., “Event-driven service-
oriented architecture for an agile and
scalable network management system”,
IEEE Conference on Next Generation Web
Services Practices, August 2005.

24. Kumar Harikumar, A., Lee, R., Chia-
Chu C., Hae-Sool Y., “An event driven
architecture for application integration
using Web services”, IEEE Conference on
Information Reuse and Integration,
August, 2005.

25. McCabe, R., Pollen, M., “Evaluating
Architectures With System Attributes”,
Software Productivity Consortium, 2004.

26. Mil-Std-1388-1A, “Logistics
Support Analysis”, DOD, Pars. 20, April
1983.

27. Open Systems Joint Task Force,
Open Systems Joint Task Force,
http://www.acq.osd.mil/osjtf/, 2005.

28. Rossak, W., Prasad, S., “Integration
Architectures – a framework for systems
integration decisions”, Proceedings of the
IEEE international conference on systems,
man, cybernetics, 1991, pp. 545-550.

29. Smith, D., O’Brien, L.,
Kontogiannis, K., Barbacci, M., “The
Architect: Enterprise Integration”, SEI
News, Vol. 5, No. 4, 2002.

30. Software Engineering Institute (SEI),
Carnegie Mellon, “Quality Measures
Taxonomy”,
http://www.sei.cmu.edu/str/taxonomies/

22

qm_tax_body.html, 2006.
31. Systems Engineering Handbook v3,

INCOSE, 2006.
32. Verma, D., Johannesen, L.H.,

“Supportability assessment and evaluation
during system architecture development”,
INCOSE Symposium, Minneapolis, MN,
July 2000, pp. 699–706.

Biography
Dr. Rashmi Jain is Associate

Professor of Systems Engineering at Stevens
Institute of Technology. Dr. Jain has over 15
years of experience of working on socio-
economic and information technology (IT)
systems. Over the course of her career she
has been involved in leading the
implementation of large and complex
systems engineering and integration
projects. Dr. Jain is currently the Head of
Education and Research for International
Council of Systems Engineering (INCOSE).
Her teaching and research interests include
systems integration, systems architecture
and design, and rapid systems engineering.
Dr. Jain is Head of Education and Research
of INCOSE. In this role she is leading the
development of a reference Systems
Engineering curriculum. She holds Ph.D.
and M.S. degrees in Technology
Management from Stevens Institute of
Technology.

Anithashree Chandrasekaran is a
Doctoral Candidate in the School of Systems
and Enterprise at Stevens Institute of
Technology. Her research interests includes
Rapid Systems Development and its
processes, Development process
reengineering, Risk Management and
Modeling, System Integration, System
Design and Architecture. She obtained her
B.E. in Electrical and Electronics
Engineering from P.S.G. College of
Technology, India. She obtained her M.S. in
Systems Engineering from Stevens Institute
of Technology. She is the president of
Stevens INCOSE student chapter.

George M. Elias is a Systems
Engineering Doctoral Candidate at Stevens
Institute of Technology. Mr. Elias is a
Systems Engineer at ITT Electronic Systems
in Clifton, New Jersey. Mr. Elias has an
Undergraduate degree in Information
Systems from Rutgers and New Jersey
Institute of Technology and a Masters in
Computer Science from Stevens Institute of
Technology. Mr. Elias has research interests
in Systems Architecture and Systems
Engineering Attributes.
Robert Cloutier (Rob) has over 20 years
experience in systems engineering, software
engineering, and project management in
both commercial and defense industries. His
research interests include Systems
Engineering Patterns and modeling complex
systems with UML/SysML, Reference
Architectures, and agent based technology
applied to systems engineering. Rob
received his Ph.D. in Systems Engineering
from Stevens Institute of Technology, and
also holds an M.B.A. from Eastern
University, and a B.S. from the United
States Naval Academy. He is an Adjunct
Professor for Eastern University and chairs
the Rowan University Electrical and
Computer Engineering Department Industry
Advisory Board. Rob belongs to the
International Council on Systems
Engineering (INCOSE), is a member of the
Technical Leadership Team. He is also an
active member of the Association of
Enterprise Architects, and IEEE. Finally, he
and his wife raise puppies for The Seeing
Eye to serve as guide dogs to the blind.

i Dr. Rashmi Jain is the primary author of this paper.
All questions and comments should be addressed to
her
ii Adapted from SYS 625 course notes, SEEM,
Stevens Institute of Technology, 2005

