
Exploring the Impact of Systems Architecture and Systems 
Requirements on Systems Integration Complexity  

 
Dr. Rashmi Jaini, Anithashree Chandrasekaran, George Elias, Dr. Robert Cloutier 

Stevens Institute of Technology 
Rashmi.Jain@stevens.edu, Anithashree.Chandrasekaran@stevens.edu, gelias@stevens.edu, 

Robert.Cloutier@stevens.edu 
 

Abstract 
The need to perform faster systems 

integration of complex systems require the 
architect and design team understand how 
the selected architecture and design 
components will impact the system 
integration processes complexity. System 
integration process complexity is an 
outcome of the interaction between degree 
of feasibility and level of effort required to 
understand, describe, implement, manage 
and document the system integration process 
for a given system development and 
operational environment. This paper 
analyzes the cause and effect relationships 
between the system requirements, 
architecture and the system integration 
processes complexity. In order to address 
systems integration issues upfront in the 
design phase it is necessary to determine if 
the architecture and design of components, 
sub-systems, processes and interfaces 
impacts (and to what extent) system 
integration process complexity. This paper 
also defines, and analyzes the impact of the 
different system architecture and 
requirements factors on system integration 
process complexity. A research framework 
is developed to understand the cause and 
effect relationships between the system 
requirements, architecture and integration 
process.  Finally, the paper proposes 
recommendations based on the causality 
results. These conclusions are based on 
research undertaken by the authors on 8 

development projects in the government 
sector. 
Keywords: System Architecture, System 
Integration, Integration Complexity, System 
Requirements 

Introduction 
It is necessary to determine if 

integration of the defined physical elements 
and interfaces in system architecture 
contributes to system integration process 
complexity. Today’s systems are usually 
expected to function independently and in 
cooperation with the existing systems 
(system of systems). The cooperating 
systems undergo frequent changes and 
interoperability becomes a key factor and a 
major contributor to system integration 
process complexity. Interoperability is based 
on the existence of the conceptual view 
[Carney and Oberndoff, 2004]. The 
conceptual view can be embodied in 
requirements and architecture/design and the 
system architecture determines the level of 
interoperability. The system integration 
process complexity includes interoperability.  

The major focus of the paper is on 
the cause and effect relationship between 
system requirements, system architecture, 
and system integration process complexity. 
The paper is based on the research that 
includes system engineering literature 
reviews, study of industry best practices and 
a survey of the system engineering leads for 
eight different development projects in a 
government organization. The research 
methodology used for this study is provided 
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in Figure 1. This paper is organized in a 
similar outline, first establishing the context 
by defining and discussing system 
integration process, and its complexity 
classification. In order to understand, 
analyze and prioritize the causal factors a 
cause and effect relationship model was 
developed and relevant attributes of good 
requirements and architecture were 
identified. These requirements and 
architecture attributes define the activities 
involved in these two critical phases and 
enable a relatively simplified integration 
process. Next, a set of activities/factors of 
system requirements and system architecture 

were selected. The selection of these 
activities and factors were based on the 
assumption that these activities contribute 
towards better requirements and architecture 
and would also reduce the system 
integration process complexity, and improve 
the quality of system verification and 
validation. A survey was then developed to 
verify and validate this. Finally, this paper 
discusses a set of research questions and the 
findings to further provide a meaningful 
analysis of these relationships between 
system requirements, architecture and 
integration process complexity.  

Research Methodology: Cause and Effect Relationship between SR, SA and SI Process Complexity
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Figure 1 Research Methodology 

System Integration Process 
Complexity 

System integration (SI) process is 
defined as a set of activities that transforms 
the stakeholder requirements into an 
operational system by unifying the process 
components and product components while 
ensuring compliance to the specified levels 
of component operations and 
interoperability/interdependence.  

Systems integration is the process 
that links the systems engineering life cycle 
process from requirements to verification 
and validation and ultimately 
implementation of the system as shown in 
the Figure 2. This linking process is also 
called traceability, which is an integral 
component of an effective systems 
integration process.   

The system architecture and design 
is determined by the system requirements 
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which are originated and derived from the 
stakeholder requirements. Requirements 
specification involves translating system 
requirements into a formal representation of 
interrelated units. The output of this process 
serves as a blueprint of the system which 
guides and controls all the subsequent 
development activities [Dogru, et.al, 1992]. 
The architecture and design decomposes and 

allocates the system functionality into 
components, sometimes referred to as 
Hardware Configuration Items (HWCI) and 
Computer Software Configuration Items 
(CSCI), and defines the interfaces between 
these configuration items. The complexity of 
the systems integration process may be 
determined by the functional and physical 
decomposition of the system architecture. 

As you create your architecture (design), you 
determine the requirements allocation and trace 
between the requirements and design
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Figure 2 System Integrationii 

Figure 2 demonstrates the process by 
which the functional architecture enables the 
requirements to be traced and defined for 
each of the configuration items that are a 
part of the physical architecture.  These 
requirements form the basis for hardware 
and software detail design and development. 
Requirements are usually allocated to 
functions (within the functional 
architecture), that are performed by physical 
elements. In [Rossak and Prasad, 1991] 
Rossak and Prasad state that integration 
architectures for system of systems serve as 
a general pattern to define the basic layout 
of an integrated system. The integration 
architectures deal with the development of 
new system parts and the post-facto 
integration of already existing solutions by 

providing strategy of system decomposition, 
data storage, inter-process and user 
communication  

The importance of the system integration 
process in the development of a system and 
its successful implementation can be 
understood and appreciated by 
understanding and familiarizing with these 
SI process activities. Despite the large 
investments that are made, many integration 
efforts fail for a number of technical, 
organizational and management, and 
migration planning reasons. The technical 
issues include the following [Smith, et al. 
2002]: 

 Legacy systems originated from 
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unplanned, stovepipe development or 
were developed as batch, single tier. 

 Data is specific to the applications and 
was not designed for sharing. 

 The legacy systems were not initially 
designed for new quality-attribute 
requirements and are being affected by 
needs for interoperability, performance, 
security, and usability. 

 The scope for the integration effort is not 
adequately defined. 

 Decisions are made without performing 
adequate analyses (sometimes referred to 
as “management by magazine”) 

 
The exponential development and 

growth of technology and increase in user 
demands has resulted in increase of 
complexity in the system integration and 
development process. Complexity in this 
context is the degree to which a system or 
component has a design or implementation 
that is difficult to understand and verify 
[IEEE 610-12, 1990]. Complexity is also 
defined as the degree of complication of a 
system or system component, determined by 
such factors as the number and intricacy of 
interfaces, the number and intricacy of 
conditional branches, the degree of nesting, 
and the types of data structures [Evans and 
Marciniak, 1987]. Any measurement of 
process complexity requires measurement of 
situation complexity, action complexity and 
intention complexity. [Howard, et al. 2004]   

We define 

System Integration process complexity as 
an outcome of the interaction between 
degree of feasibility and level of effort 
required to understand, describe, 
implement, manage and document the 
system integration process for a given 
system development and operational 
environment. 
Some of the factors that impact the degree of 
feasibility and the level of effort required to 

understand, describe, implement, manage 
and document the system integration process 
activities are shown in Table 1. This list is 
based on our system integration framework 
and system integration process model (SIPM) 
[Jain, et al. 2007a, 2007b]. 

Table 1 Factors that impact degree of 
feasibility and level of effort required for 
SI 

Factors that impact 

Degree of feasibility Level of effort required 

Availability of the 
integration (including 
V&V) methodologies 
and tools 

Documentation of the 
system requirements 

Availability of the 
required external and 
internal interfaces 

System Integration 
Planning, Control and 
Management 

Scope of COTS 
requirements (interface 
and interoperability) 

Documentation of 
system integration 
specifications (including 
V&V)  

Scope of legacy 
requirements (interface 
and interoperability) 

Familiarity and 
knowledge of the 
integration (including 
V&V) methodologies 
and tools 

Adherence to the 
standards, regulations 
and guidelines 

Familiarity and 
knowledge of the 
required external and 
internal interfaces 

Planned programmatic 
resources for the system 
integration process 

Knowledge of the system 
constraints, context, 
environment and scope 

Level of performance 
metrics to be supported 

Specification of 
performance metrics 
(What, How, When to 
measure? Who will 
measure?) 

Level of 
operational/service 
metrics to be supported 

Specification of 
operational/service 
metrics (What, How, 
When to measure? Who 
will measure?) 
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Factors that impact 

Degree of feasibility Level of effort required 

 Degree of automation of 
the SI process 

 Number of dependencies 
for SI process activities 
(Degree of concurrency 
of the SI process) 

  Most of the research discussion on 
system integration complexity is in the 
context of the complexity associated with 
the entire system. Currently, system 
integration complexity is mainly focused on 
the degree of testing required and interface 
complexity. But there is a need to look at 
system integration complexity from both the 
process and product point of view in order to 
ascertain associated risks in a 
comprehensive manner. . To address these 
aspects we classify system integration 
process complexity as Technical, 
Programmatic, Configuration, Operational, 
and Organizational. This classification is 
based on how the system lifecycle and the 
development activities impact the system 
integration process. These are described 
below. 

Technical complexity: The complexity of 
system integration process due to the 
required system capabilities and functions. 
The major factors of technical complexity 
are the integration technologies required to 
achieve the system capabilities and 
functions, feasibility and performance of the 
interfaces, and strategies, methodologies and 
tools for verification and validation of the 
technical effectiveness of the system and its 
sub-systems. 
Programmatic complexity: Programmatic 
complexity includes system integration 
process complexity arising out of the 
variance between the planned and available 
resources needed to support the system 
integration process over its lifecycle. The 
major variances resulting in such 

programmatic complexity are allocated 
budget, cost associated with system 
integration activities, schedule, 
materials/equipments/tools, and skill sets. 
Configuration complexity: The complexity 
of system integration process due to the 
inconsistencies and lack of control in the 
development of process and product. The 
major factors of configuration complexity 
are the control and management of changes, 
volatility and clarity of documentation and 
specifications, integration baselines, and 
integration personnel communication. 
Operational complexity: This complexity 
results from providing and supporting the 
required level of operational support and 
system availability. The system integration 
operational complexity can be observed in 
the required level of effort to integrate, 
verify and validate the availability and 
operational support of the system and its 
sub-systems. 
Organizational complexity: The complexity 
of system integration process due to the 
organizational strategy, compliance, 
processes and product line. The major 
factors of organizational complexity are 
service level agreements of sub-systems and 
interfaces, standards, regulations and 
guidelines for system integration, and legacy 
system integration. 
 

Designing for integration 
Most of the factors that result in SI 

process complexity are external to the 
context of system integration process. The 
system integration processes and activities 
receive most of its inputs, controls and 
triggers from system requirements and 
system architecture (Figure 3, Figure 4, 
Figure 5). This highlights the direct cause 
and effect relationship between the system 
requirements, architecture and system 
integration. System requirements and 
architecture has a direct impact on system 
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integration.  

System architecture also receives 
inputs, triggers and controls from system 
requirement activities. Hence there is a 
mediating and moderating effect of system 

architecture on system integration. System 
architecture can play a direct causer or a 
moderator or a mediator depending on the 
system context, and concept.  

 
Figure 3 Context Diagram for the Integration Process [SE Handbook, 2006] 

 
Figure 4 Context Diagram for the Verification Process [SE Handbook, 2006] 
 



 
Figure 5 Context Diagram for the Validation Process [SE Handbook, 2006] 

The goodness of system architecture 
and requirements can be defined by some 
attributes. The attributes of a system or 
architecture are important because they are 
used to describe the properties of the system 
or the system architecture in a unique 
distinguishing manner [Elias and Jain, 
2007]. System attributes are a key link 
between good system architecture and the 
system’s ultimate development cost and 
schedule [McCabe and Pollen, 2004]. A 
system attribute denotes a characteristic or 
category of requirements commonly 
demanded of systems. Recent work suggests 
that system attributes offer an effective set 
of perspectives to evaluate architectural 
decisions and tradeoffs [Bass, 2003]. The set 
of attributes shown in Figure 6 provides 
standard guidelines for system requirements 
and system architecture. By addressing some 
of these attributes of system architecture and 
requirements some of the significant system 
integration issues can be contained and 
controlled effectively resulting in a 
relatively simplified system integration 
process. A comprehensive list of attributes 
of architecture can be obtained from SEI 
Quality Measure Taxonomy [SEI, 2006], 
[Clements, 2001], and [Elias and Jain, 
2007]. 

An attribute is a “property or 
characteristic of an entity that can be 
distinguished quantitatively or qualitatively 
by human or automated means [ISO/IEC 
15939, 2002].” The attributes of a system or 
an architecture are used to describe the 
properties of the system or the SA in a 
unique distinguishing manner. Because 
attributes are measurable they are ideal for 
describing and monitoring many systems 
engineering tasks [ISO/IEC 15939, 2002]. 
The use of attributes to measure and 
evaluate systems and systems architecture is 
valuable in making decisions and tradeoffs 
[Bass, 2003]. In this paper, we focus on 
important attributes that contribute to 
System Integration Complexity (SIC). By 
understanding which attributes of SA affect 
SIC one could use this information 
throughout the requirements, architecting, 
and development phases of the system 
lifecycle. 

SIC can be affected by multiple 
factors. We are primarily concerned with 
system architecture aspects that impact SIC 
such as commonality, modularity, standards-
based, and reliability, maintainability, and 
testability (RMT) as shown in Figure 6.  
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Figure 6 Architectural attributes that impact SIC 

Commonality refers to the systems 
design where a component or subsystem can 
be used in more than one place in the 
system. Commonality directly corresponds 
to the degree to which components and 
subsystems are reused within the system. 
Commonality is highly related to reuse when 
multiple systems have subsystems in 
common. Reusability is the degree to which 
a module, component, system or other work 
product can be used more than once [IEEE 
610-12, 1990]. Operational commonality has 
to do with how close-related systems or 
subsystems are operationally similar. This 
directly affects the attributes of usability and 
maintainability. Another aspect of 
commonality is architecting with a view to 
use familiar technology.  Familiarity of 
technology helps design more open and 
flexible architectures. Factors that 
negatively affect commonality are: the 
number of unique Line Replacement Units 
(LRU), number of unique fasteners, number 
of unique cables, number of unique 
standards implemented, number of unique 

software packages implemented, number of 
languages, number of compilers, average 
number of software instantiations. 

Modularity is the degree to which a 
system is structured as a configuration of 
smaller, self-contained units with well-
defined interfaces and interactions (i.e., 
independently testable), moderating design 
complexity and enhancing its clarity, and 
enabling design and functional flexibility 
and variety for the system as a whole 
[McCabe and Pollen, 2004], [Open Systems 
Joint Task Force, 2005]. Modularity is 
usually associated with open systems design, 
but in this case we are considering open 
systems design to be a design standard, 
while modularity is a good design practice 
on its own. Nevertheless, both of these 
concepts are covered regardless of where 
they are placed in this structure. Abstracting 
the system architecture enables the architect 
to review several alternative solutions before 
choosing the one that will be implemented.  
Differentiating the layers of functionality 
and the structure that is required to support 
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through abstraction simplifies the choice in 
many cases.  Abstraction also facilitates 
reusability and portability by preserving the 
boundaries of the different layers [Jorgensen 
and Philpott, 2002]. 

Standards based systems are 
designed and architected based on open 
standards. Open systems employ a system 
design philosophy which provides for 
interoperability and portability. In addition 
to using an open systems approach, the 
architecting or implementing organization 
may choose to document their own design 
standards. Organizational design standards 
create consistency in the way systems are 
architected and designed by an organization. 
The downside to designing to standards is 
that they may impose constraints that 
become problematic in relation to 
technology issues, or may not even be 
possible in some cases. While designing to 
standards may not always be possible or 
desirable, it is always important to consider 
design standards. 

Reliability is often a very important 
factor in the design of a system. Reliability 
has two classic definitions that apply to 
systems: 1) The duration or probability of 
failure-free performance under stated 
conditions, and 2) The probability that an 
item can perform its intended function for a 
specified interval under stated conditions. 
(For non-redundant items, this is equivalent 
to definition (1). For redundant items, this is 
equivalent to mission reliability [MILSTD- 
1388-1A, 1983]. 

Unfortunately, when systems are not 
designed with maintainability in mind it is 
usually left out.  Maintainability is the ease 
with which a software system or component 
can be modified to correct faults, improve 
performance, or other attributes, or adapt to 
a changed environment [IEEE 610-12, 
1990]. Methods to measure maintainability 
are mean time to repair (MTTR), maximum 
fault group size, etc. 

Testability is the degree to which a 
system or component facilitates the 
establishment of test criteria and the 
performance of tests to determine whether 
those criteria have been met [IEEE 610-12, 
1990]. Examples of issues that affect 
testability: number of LRUs covered by BIT 
(Built In Test), logging/recording capability, 
ability to create system state at time of 
system failure, online testing, ability to be 
operational during external testing, ease of 
access to external test points, automated 
input/stimulation insertion). 

Requirements are the life-blood of 
systems development.  Every man-made 
system starts with requirements regardless 
of whether they are implicit, explicit, good 
or bad.  The first phase of the systems 
engineering process is driven by collecting, 
composing and analyzing systems 
requirements. These requirements drive the 
success or failure of the system throughout 
the lifecycle. The decisions made through 
detailed design commit approximately 80% 
of the cost of the system [Buede, 2000]. 
Therefore, requirements are a very important 
driver of the systems engineering process 
and require substantial attention. 
Requirements that are generated as a result 
of stakeholder concerns, and written in the 
context of the key attributes about to be 
listed, increase that likelihood of system 
success. 

Based on our research, we identified 
the following 18 activities that characterize 
the impact of system requirements and 
architecture related attributes on systems 
integration complexity.  
1. Commonality in hardware and software 

subsystems (such as number of unique 
Line Replacement Units (LRU), number 
of unique fasteners, number of unique 
cables, number of unique standards 
implemented, number of unique 
software packages implemented, number 
of languages, number of compilers, 
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average number of software 
instantiations) 

2. Percentage of familiar technology used 
in the system of interest 

3. Operational commonality (such as 
percentage of operational functions 
automated, number of unique Skill codes 
required, estimated operational training 
time, estimated maintenance training 
time) 

4. Physical modularity (such as ease of 
system element upgrade, ease of 
operating system upgrade) 

5. Functional modularity (such as ease of 
adding new functionality, ease of 
upgrade existing functionality) 

6. Orthogonality (examples are functional 
requirements fragmented across multiple 
processing elements and interfaces, 
throughput requirements across 
interfaces, common specifications 
identified) 

7. Abstraction of system architecture 
8. Required level of reliability (factors such 

as fault tolerance, percentage of system 
loading (processor loading, memory 
loading, network loading, etc…)) 

9. Maintainability in terms of expected 
MTTR (mean time to repair), maximum 
fault group size, accessibility and 
required system operational during 
maintenance 

10. Testability factors (Examples: number of 
LRUs covered by BIT (BIT Coverage), 
reproducibility of errors, 
logging/recording capability, ability to 
create system state at time of system 
failure, online testing, ability to be 
operational during external testing, ease 
of access to external test points, 
automated input/stimulation insertion) 

11. Interface openness (such as number of 
Interface Standards/Interfaces, multiple 
vendors, multiple business domains, 
standard maturity) 

12. Open system orientation (hardware and 
software standards) 

13. Consistency orientation (common 
guidelines for implementing diagnostics 
and performance monitoring and fault 
localization) 

14. Clear identification of the system 
requirements (uniquely identified (i.e., 
number, name tag, mnemonic, 
hypertext) and reflect linkages and 
relationships) 

15. Prioritization of system requirements 
(based on stakeholders’ input and 
criticality analysis) 

16. Feasibility analysis for system 
requirements 

17. Risk analysis of system requirements 
18. Categorization of system requirements 

based on its type (such as input, output, 
reliability, availability, security, 
environmental, performance, interface, 
testing) 

Some of the significant sources of 
the causality analysis include [Verma and 
Johannesen, 2000], Architecture Tradeoffs 
Analysis Method (SEI ATAM), IBM 
Architecture Evaluation Methodology (IBM 
AEM), [Bachmann, et al. 2000], 
[Bachmann, et al. 2002], [Kazman, et al. 
2003], [Bachmann, et al. 2003], [IEEE 1233, 
1998], [IEEE 830, 1998], INCOSE SE 
Handbook v3 [SE Handbook, 2006]. These 
system architecture and requirements 
activities when implemented can result in 
certain clearly observable patterns in system 
architecture and requirements [Cloutier, 
2006], [Cloutier and Verma, 2007]. By 
studying and mining similar systems, 
common patterns are found that go well 
beyond software patterns in common use 
today. These patterns can form the basis for 
entire subsystems of a complex system. The 
Perform C2 (command and control) is an 
example of such a pattern [Cloutier and 
Verma, 2006]. In this system architecture 
pattern, the smaller plan, detect, control, 
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and engage patterns are assembled into a 
pattern language called Perform C2. One of 
the motivators documented for the use of 
system patterns is the value of managing 
complexity. When a pattern such as the 
Perform C2 is implemented and integrated 
into a system, the integration complexities 
are better understood, and can be leverage in 
subsequent implementation and integration 
efforts if the same pattern is used again. The 
same can be said for patterns that evolve 
when developing embedded system in 
compatible languages or common platform, 

using fasteners of the same specification 
within and among the subsystems. 

Each of the identified system 
requirements and architecture activity and 
factor help address at least one category of 
system integration process complexity. The 
impact of these activities on the complexity 
category is a result of the dependencies 
between the complexity factors and the 
activities. A mapping was created to provide 
an overview of how each activity/factor 
impact the system integration process 
complexity categories. The mapping is 
shown in Table 2. 

Table 2 System Architecture and Requirements Cause and Effect on System Integration 
Process Complexity 

System Architecture and  
Requirements Factors 

Technical 
complexity 

Programmatic 
complexity 

Configuration
complexity 

Operational 
complexity 

Organizational
complexity 

Commonality in hardware and 
software subsystems X         
Percentage of familiar 
technology   X X   X 
Operational commonality    X   X X 
Physical modularity  X         
Functional modularity  X         
Orthogonality X   X     
Abstraction of system 
architecture   X X   X 
Required level of reliability        X   
Required level of 
maintainability        X   
Testability   X       
Interface openness        X X 
Open system orientation    X X   X 
Consistency orientation  X   X     
Clear identification of the 
system requirements  X X   X X 
Prioritization of system 
requirements  X   X     
System requirements feasibility 
analysis X X   X   
System requirements risk 
analysis X X   X X 
Categorization of system 
requirements  X X X X X 

 



Formulating hypothetical SI 
complexity causal relationships 

Through the course of this work, 
research questions were constructed to assist 
in the understanding of how and to what 
extent the identified system architecture and 
requirements factors impact the system 
integration process. By analyzing these 
research questions we arrive at some 
recommended practices to handle the cause 
and effect relationship between system 
architecture and requirements that would 
simplify the system integration process and 
reduce the dependencies between these 
development phases. Addressing some of 
the system integration issues during the 
system requirements and architecture phase 
provides a strong foundation for the 
integration phase and help manage the 
associated criticality of these issues. When 
the foundation for the system integration 
activities and processes is initiated early in 
the lifecycle, feedback and iterations during 
development helps to refine and improve 
system integration strategies, planning and 
quality. 

The two factors (dependent 
variables) considered for this research study 
were the system integration complexity 
(system integration process complexity) and 
quality of system verification and validation 
(V&V). The most important phase of system 
integration is the system verification and 
validation. V&V are the phases of system 
engineering where the required functionality 
comes together with all the interfaces 
completed. Hence studying the quality of 
V&V along with the SI complexity is 
important and provides a comprehensive 
view of system integration. The independent 
variables are the system architecture and 
requirements factors discussed in the 
previous section. We formed the following 
research questions to understand the cause 
and effect relationships between system 

architecture and requirements with system 
integration process complexity. 
 
1. Null Hypothesis: There is a cause and 

effect relationship between system 
requirements, system architecture and 
system integration process complexity. 

2. Null Hypothesis: There is a cause and 
effect relationship between system 
requirements, system architecture and 
quality of V & V. 

3. What are the three most important 
factors of system requirements and 
architecture that could reduce system 
integration complexity? 

4. What are the three most important 
factors of system requirements and 
architecture that could improve quality 
of system verification and validation? 

5. Does system architecture impact the 
complexity of system integration? 
Hypothesis: System architecture 
improvements can reduce system 
integration complexity.  

6. What are the three most important 
architectural factors for system 
integration complexity? 

7. Does system architecture impact the 
quality of system verification and 
validation? Hypothesis: System 
architecture improvements can improve 
the quality of system verification and 
validation. 

8. What are the three most important 
architectural factors for quality of 
verification and validation? 

9. Does the level system reliability and 
maintainability impact the complexity of 
system integration and the quality of 
verification and validation? Hypothesis: 
Higher levels of reliability and 
maintainability in system design reduce 
the complexity of system integration and 
increase the quality of verification and 
validation. 
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10. Does an improved requirement 
engineering process results in reduced 
system integration complexity and better 
quality of verification and validation? 

11. Does familiarity of technology lead to 
reduced system integration complexity 
and better quality of verification and 
validation? 

A survey questionnaire addressing each of 
these identified system architecture and 
requirements factors was developed. The 
survey questions are designed to verify if 
there is a cause and effect relationship 
between each of the identified 18 factors on 
system integration complexity and quality of 
system verification and validation and also 
measure their impacts. The survey questions 
were also designed to capture the comments 
(thoughts and inputs) of the participants on 
each of these 36 cause-and-effect 
relationships. The questionnaire with 36 

questions was piloted to the SE personnel at 
a government organization to obtain their 
feedback on the survey clarity and 
terminologies used. After the completion of 
the pilot, data was collected on 8 different 
development projects. The survey responses 
are shown in Table 3, and Table 4. The 
impact of the causal factors of requirements 
engineering on system integration 
complexity is shown in Figure 7, and Figure 
8. The impact of the causal factors of system 
architecture on system integration 
complexity is shown in Figure 9, and Figure 
10. The impact of the causal factors of 
requirements engineering on quality of 
verification and validation is shown in 
Figure 11, and Figure 12. The impact of the 
causal factors of system architecture on 
quality of verification and validation is 
shown in Figure 13, and Figure 14.

Table 3 System Integration Process Complexity: Survey Results 

Partially Moderately Significantly Exceptionally

1 Categorization of system requirements 
based on its type 

25 13 50 0 13

2 Clear identification of the system 
requirements 

0 0 38 25 38

3 Commonality in hardware and software 
subsystems

0 0 63 25 13

4 Decrease in abstraction of the system 
architecture 

67 17 17 0 0

5 Decrease in expected maintainability 71 14 14 0 0
6 Decrease in interface openness 29 29 14 29 0
7 Decrease in level of required reliability 43 29 14 14 0
8 Decrease in orthogonality 0 14 29 57 0
9 Decrease in testability factors 33 17 33 17 0
10 Increase in consistency orientation 0 29 43 29 0
11 Increase in functional modularity 0 0 43 43 14
12 Increase in open system orientation 25 25 13 38 0
13 Increase in operational commonality 13 25 50 13 0
14 Increase in percentage of familiar 

technology
13 13 25 50 0

15 Increase in physical modularity 0 0 57 29 14
16 Prioritization of system requirements 0 13 38 25 25
17 System requirement feasibility analysis 25 13 38 13 13
18 System requirement risk analysis 13 13 38 25 13

Improved (%)Not
Improved

(%)

SI is improved as a result of#
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Figure 7 SI process improvements based on specific Requirements Engineering activities 
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Figure 8 SI process improvements based 
on Requirements Engineering 
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Figure 9 SI process improvements based 
on System Architecture 
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Figure 10 SI process improvements based on specific System Architecture activities [Legend 
same as Figure 7] 



Table 4 Quality of Verification and Validation: Survey Results  

Partially Moderately Significantly Exceptionally

1 Categorization of system requirements based on 
its type 

25 13 38 13 13

2 Clear identification of the system requirements 0 0 38 25 38
3 Commonality in hardware and software 

subsystems
0 0 75 25 0

4 Decrease in abstraction of the system architecture 50 33 0 0 17

5 Decrease in expected maintainability 43 29 14 0 14
6 Decrease in interface openness 33 17 33 17 0
7 Decrease in level of required reliability 43 14 14 14 14
8 Decrease in orthogonality 17 0 17 50 17
9 Decrease in testability factors 33 0 50 0 17
10 Increase in consistency orientation 14 29 29 29 0
11 Increase in functional modularity 17 17 33 17 17
12 Increase in open system orientation 25 38 13 25 0
13 Increase in operational commonality 0 13 50 25 13
14 Increase in percentage of familiar technology 13 13 38 25 13
15 Increase in physical modularity 0 17 33 17 33
17 Prioritization of system requirements 13 25 25 13 25
18 System requirement feasibility analysis 25 25 25 25 0

Improved (%)Verification and Validation is
improved as a result of

Not
Improved

(%)

#
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Figure 11 V&V quality improvements based on specific Requirements Engineering 
activities 
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Figure 12 V&V quality improvements 
based on Requirements Engineering 
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Figure 13 V&V quality improvements 

based on System Architecture 
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Figure 14 V&V quality improvements based on specific System Architecture activities 

[Legend same as Figure 11] 

Significant Cause and Effect 
Relationships  

The results of the survey were 
analyzed based on the research questions. 
The following sections provide a 

consolidated view of this analysis and 
synthesis. The significant cause and effect 
relationships between system requirements, 
system architecture, integration process 
complexity, and quality of V&V are shown 
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in the fishbone charts shown in Figure 15 
and Figure 16. 

 

 
Figure 15 Major Factors Impacting SI process complexity 

 
Figure 16 Major Factors Impacting Quality of System Verification & Validation 

Impacts of Requirements Engineering on 
SIC and Quality of V&V 

The results of the survey confirmed 
the belief that an improved requirement 
engineering (RE) process results in reduced 
system integration complexity and a higher 
quality requirements verification and 
validation. The improved RE process will 
result in significant improvements by 
reducing system integration complexity and 
improving the quality of V&V. The 
significant system requirements factors that 
result in reducing the system integration 

complexity and in improving the quality of 
verification and validation are discussed 
below. 
Clear identification of system requirements:  

There has been a good amount of 
research and improvements in the field of 
requirements engineering. The major focus 
area of these research, methods and tools is 
the ambiguity and volatility associated with 
the system requirements. Subject + Verb + 
Modifier format is commonly used for clear 
system requirements. Traceability and 
testability of requirements have to be 



 
18

concentrated during requirements elicitation 
and analysis. A number of tools on the 
market today help system engineers trace 
requirements and specify the associated test 
requirements. But the traceability in most of 
these tools ends during the requirements 
phase. Even though there is a good 
traceability between the originating and 
derived requirements, the benefits are 
limited when there is no traceability across 
all phases of development. Stakeholder 
involvement throughout the system 
development is a key to identify clear 
system requirements and transition them 
effectively across the system lifecycle.  

By performing this activity the 
system capabilities and functions can be 
clearly identified. This activity impacts 
every phase of system integration (derive 
integration requirements, develop 
integration architecture, plan integration, 
implement based on the architecture and 
plan, and verify and validate the system and 
its interfaces) and significantly impacts the 
technical complexity of integration. By 
identifying clear requirements, the cost 
overruns and schedule slippage can be 
avoided due to the requirements ambiguity.
 Therefore, requirements traceability 
also impacts programmatic complexity. By 
identifying clear operational support and 
availability requirements and other 
constraining requirements the risks 
associated feasibility and effort required can 
be analyzed up in the lifecycle and can be 
mitigated. The result is lower integration 
operational complexity and organizational 
complexity. 
Prioritization of system requirements: 

During system development 
concentrating on value added activities is 
very important. In order to provide the value 
added activities the system requirements 
need to be prioritized earlier in the lifecycle. 
One of the key success criteria for 
evolutionary or iterative development is 

prioritization of system requirements. The 
effort required for integration, verification 
and validation can be planned and executed 
effectively by performing this activity early 
in the lifecycle with stakeholder 
participation. By prioritizing and 
concentrating on core functionalities/ 
capabilities first and building upon them can 
also help in configuration management. This 
activity helps reduce both the technical and 
configuration complexity of integration. 

Impacts of Systems Architecture on SIC 
and Quality of V&V 

The results of the survey suggest that 
there will be a significant improvement in 
the system integration complexity and the 
quality of V&V by adopting some of the 
suggested system architecture practices. 
Current systems engineering researchers 
focus on architectures that are integration 
friendly. The mode of system development 
has shifted away from being manufacturing-
centric to being integration-centric due to 
the fact that use significant percentage of 
COTS, strategic outsourcing, value based 
capabilities development, and need for 
supply chain excellence. Another 
architecture trend is the migration toward 
service oriented architectures (Service 
Oriented Architectures focused around 
supportability of operational scenarios) and 
event driven architecture which are even 
more integration friendly [Kumar, et. al., 
2005], [Krishnamoorthy, et. al., 2005] The 
factors of system integration process 
complexity are addressed earlier in the 
lifecycle and addressed as a part of the 
architecture by adopting these integration 
friendly architecture methodologies. Some 
of the system architecture factors that impact 
system integration process complexity 
evolve when these architecture 
methodologies are adopted. Future research 
based on these research findings has been 
proposed at Stevens Institute of 
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Technology, and should result in practices, 
methods, and tools that will aid in creating 
system architectures which utilize patterns at 
the system and subsystem levels, and 
displaying high degrees of modularity.  

Good architecture should exhibit 
characteristics such as Time Sensitivity, 
Context Sensitivity, and Stakeholder 
Sensitivity. Based on the survey results the 
factors of system architecture that impacted 
system integration process complexity and 
quality of system verification and validation 
the most and results in at least partial 
improvement are  

Commonality in hardware and 
software subsystems: This system 
architecture factor emerged to be an 
important factor impacting both system 
integration process complexity and quality 
of system verification and validation. 
Commonality in subsystems helps reduce 
the effort required for integration, 
verification and validation. The degree of 
unique interfaces, platforms, technology 
used, and protocols are reduced resulting 
familiarity of subsystems. This reduces the 
technical complexity associated with system 
integration process. 

Increase in physical modularity: 
Quality of verification and validation can 
have at least moderate improvements and 
System integration process complexity can 
be at least partially reduced by increasing 
the physical modularity in system 
architecture. The physical and functional 
modularity in architecture facilitates both 
modernization and replacements of legacy 
systems. This significantly reduces the 
complexity associated with the legacy 
system integration. Modularity also results 
in higher levels of maintainability and 
support. This reduces the technical 
complexity associated with system 
integration process.  

Increase in functional modularity: 
System integration complexity can be 

reduced significantly by increasing 
functional modularity in system architecture. 
The increase in functional modularity in 
system architecture is a major contributor to 
rapidity in system development by adding 
ease of building upon or upgrading the 
existing functionalities. This factor is a key 
in evolutionary and iterative system 
developments. The risk associated with 
system architecture during rapid system 
development would also be reduced by 
addressing functional modularity. This 
reduces the technical complexity associated 
with system integration process. 

Increase in operational commonality: 
Quality of verification and validation can be 
improved significantly by increasing the 
operational commonality. Commonality is 
the extent to which the system is made up of 
common hardware and software 
components, utilizes familiar technologies, 
and is automated reducing the effort of 
training and maintenance. Operational 
commonality in system architecture results 
in operational requirements that can be 
easily verified and validated. Automation 
also reduces the effort involved in V&V. 

Decrease in orthogonality: This 
factor of system architecture results in 
improvements in both quality of verification 
and validation and system integration 
process complexity. Orthogonality of system 
architecture can be reduced by performing 
one-to-one functional mapping. This factor 
reduces both the technical and configuration 
complexities of system integration process. 

Increase in percentage of familiar 
technology: By having familiar technologies 
in system architecture quality of V&V and 
system integration process can be improved 
moderately. This can be achieved by 
adopting good product line architectures and 
nested layer architecture. This factor reduces 
the programmatic and configuration 
complexities of system integration process. 
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Functional modularity as a 
characteristic of system architecture plays an 
important role in reducing system 
integration complexity. However, it does not 
seem to improve system verification and 
validation. Also we can observe that 
operational commonality plays an important 
role in improving system verification and 
validation but not in reducing system 
integration complexity. These differences 
could be attributed to the nature of the tasks 
involved in system integration and system 
verification and validation. Modularity is the 
extent to which the system is made up of 
well defined, functionally non-overlapping, 
modular elements with well documented 
interfaces allowing updates to or 
replacements of a portion of the system 
without affecting the remainder of the 
system. Functional modularity in system 
architecture results in standard functional 
requirements fragmented across multiple 
processing elements and interfaces. It also 
enables adding new functionality with 
minimum disruption. By doing so system 
integration is simplified. 

The results also indicate that the 
most of the factors that impact system 
integration complexity also impact quality 
of system verification and validation. By 
adopting these activities in system 
requirements and architecture critical issues 
of system development are addressed early 
in the lifecycle. This provides more 
bandwidth for mitigating the risks associated 
with these issues. By doing so adverse 
consequences of these risks are understood 
and addressed resulting in a more likely 
successful system development and 
operation. Normally there are no system 
operational effectiveness and total cost of 
ownership tradeoffs being performed during 
these activities. Therefore, one might decide 
there is no need to perform optimization of 
system operational effectiveness and total 
cost of ownership when adopting these 

activities. However, the results presented in 
this paper indicate these activities could 
result in reduced total cost of ownership and 
improved system operational effectiveness. 

Summary 
The specific nature of application-

domain plays a critical role in the impact of 
the system architecture and system 
requirements related factors on system 
integration process complexity. The findings 
of this study were based on the survey of 
one government organization. They indicate 
that attention to key architecture and 
requirements attributes during the early 
development activities can have significant 
impact during systems integration, while 
resulting in reduced systems integration 
complexity. Further research to extend the 
study across domains and industry sectors is 
required to generalize the findings. 
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