
© Journal of Enterprise Architecture – Month Year 1

Applying Pattern Concepts to Systems (Enterprise)
Architecture

Robert Cloutier and Dinesh Verma, Ph.D.

 ABSTRACT

The existence of patterns is almost universal, and their use is evident in many domains.
The human mind seems to perceive patterns without conscious thought - we notice an
individual’s personal habits because they form patterns. Patterns are also used in a
number of engineering disciplines – software engineering, requirements engineering and
mechanical engineering to name a few. Some of these disciplines have used patterns for
over 20 years.

Today’s enterprise systems have become extremely complex. It is difficult, if not
impossible for a system architect to mentally juggle all of the details of a modern complex
multi-functional and distributed system. Patterns may provide the enterprise architect an
approach to managing this complexity. This article reviews some of the relevant research
and application related to the use of patterns, reviews how other disciplines are using
patterns, and discusses research that has been done on applying patterns to the practice
of architecting complex system (enterprise) architectures. Examples of architecture
patterns are presented and discussed, and a methodology and rationale for documenting
architecture patterns is presented.

 KEYWORDS

Patterns, enterprise architecture, systems architecture, architecture patterns, C2,
command and control

INTRODUCTION

One goal of the enterprise architect is to develop
and implement a complex system using a
methodical and repeatable approach. This
includes documenting the system architecture
from a variety of views which take into
consideration strategic business goals , business
rules, existing and legacy systems interfacing
with the system of interest, and the appropriate
and applicable technologies . A number of
frameworks exist to provide an organizing
structure for the enterprise architect. One such
framework is the Zachman Framework,
providing 30 different artifact types to assist the
enterprise architect in capturing, planning and
documenting the new architecture (Zachman,
1987). Another is the EA3 Cube (Bernard, 2004).

Systems architects within the US Department of
Defense (DoD) have a similar tool, known as the
DoD Architecture Framework, or DoDAF. This
framework provides for 26 artifact types,
representing different views and architectural
information. The DoDAF is helpful in
methodically defining, planning, and
documenting the architecture of a complex
system. And while there are differences, there
are many parallels between the approaches
suggested for enterprise architects and complex
system architects. For instance, while the
enterprise architect is concerned with business
goals and business scope, the systems architect
is concerned with the bus iness goals of the
customer (the entity paying for the complex
system being architected and developed) and

 Article

© Journal of Enterprise Architecture – Month Year 2

the scope of the system. The two frameworks
provide for artifacts that model the system and
its constituent parts, the logical nodes in the
system, and the infrastructure. These artifacts
can be produced formally, using modeling tools
and techniques such as IDEF0 or UML, or they
can be created using more informal schemas.
The important point is that they are created and
maintained. The intent of this short discussion is
not to educate the reader, but to illustrate the
similarities between Enterprise Architects and
Systems Architects within the Systems
Engineering community – there are more
similarities than differences.

Because of those similarities, there are
techniques that could be useful to architects
from both practices. The purpose of this paper is
to describe the research being performed to
investigate the application of patterns to the
practice of systems architecting. Architectural
patterns may have pragmatic utility for practicing
enterprise architects as well. .

A SHORT HISTORY OF PATTERNS

The notion of patterns is almost universal. The
human mind seems to perceive patterns without
conscious thought. We notice an individual’s
personal habits because they form patterns.
Music employs repeating patterns to make it
easier to learn the tune. For example, three
childhood songs have the same tune – Twinkle,
Twinkle Little Star, Baa, Baa Black Sheep and
The Alphabet Song - all derived from the same
composition by Mozart.

In seventeenth century England, they made use
of pattern books which contained rules of thumb
to assist the general public in transacting
business. These pattern books represented the
documented experience accumulated over the
first half of the 1600s in buying, selling, and
leasing buildings. Figure 1 represents one
example from Henry Phillips’s “The Purchaser’s
Pattern” (Baer, 2003).

For the purposes of the discussion in this paper,
a working definition of a pattern is offered as
follows: A pattern is a model or facsimile of an
actual thing or action, which provides some
degree of representation (an abstraction) to
enable the recreation of that entity over and over
again.

Figure 1. Mid seventeenth century
"patterns book".

In modern times, Christopher Alexander is
credited as being the first to understand the
value of patterns in the development of systems.
Alexander studied architecture at Cambridge.
Though formally trained in mathematics and
physics, his domain of interest was the design
and construction of homes, buildings, and
communities. Throughout the 60’s and 70’s, he
developed patterns for use by other architects
with the objective of improving the art of urban
design. He began to identify patterns for
architecture, urban designing, and planning by
looking at an architectural design and then
abstracting that design into its basic parts which
were common across other designs.

Thinking of this in the context of Zachman’s
Framework, Alexander was the planner. From
his perspective, communities became systems
to be decomposed into component parts. He
described the component parts and their
relationship to other component parts in terms of
boundaries. Alexander’s first publication on this
notion was Notes on the Synthesis of Form
(Alexander, 1964). He further developed these
concepts in A Pattern Language (Alexander,
1977). Alexander believed one could reuse a
pattern “tens of thousands of times” and not
have any two designs look the same. Nor did he
did see the patterns as remaining stagnant. He
believed patterns could always be improved
upon. “We may then gradually improve these
patterns which we share, by testing them
agains t experience…” (Alexander, 1979).

The Alexandrian form of documenting patterns
contains four components : 1) Name, 2) Context,
3) Problem, and 4) Solution (Alexander, 1977).
When using this form, the Name of the pattern
should be descriptive and should represent the
solution being proposed. Naming a pattern
succinctly is critical for pattern reuse. If the
pattern name is cryptic and without mnemonic

© Journal of Enterprise Architecture – Month Year 3

value it becomes meaningless to those looking
for a pattern to solve their particular problem,
significantly reducing the value of documenting a
pattern. The Context addresses the setting for
the problem. This might include environment,
the problem domain, or any other aspect that will
help understand where the pattern is being
applied. The Problem describes the challenge or
issue which the pattern will be used to address.
Finally, the Solution is a description on the
application of the pattern – how it is used to
solve the problem, and how it may be modified
or adapted to accomplish the task. To
demonstrate the application of the pattern
concept, Alexander outlined multiple patterns for
a farmhouse, as follows (Alexander, 1977):

• North South Axis • Two Floors
• West Facing

Entrance
• Hay Loft at the

Back
• Bedrooms in Front • Pitched Roof
• Garden to the

South
• Balcony Toward

the Garden
• Half-Hipped End • Carved Ornaments

As one reads through the patterns used to
design this farmhouse, a visual picture begins to
develop in the mind’s eye, creating a living
picture of the farmhouse and the site on which it
will rest; from nothing more than a written or
spoken list.

Other simple, yet powerful patterns documented
by Alexander include “House for a couple” and
“House for a small family” (Alexander, 1977).
The context for the “House for a couple” (Figure
2) pattern was simply characterized as “In a
small household shared by two, the most
important problem which arises is the possibility
that each may have too little opportunity for
solitude or privacy”.

Figure 2. House for a couple.

The “House for a small family” pattern (Figure 3)
context was: “In a house for a small family, it is
the relationship between children and adults
which is most critical”. The pattern was
documented to address issues regarding
children and their parents: small children like to
be around their parents, most parents do not
have a place large enough to have a dedicated
nursery, and parents do not have the heart to
keep the kids out of special areas. If these
issues are not taken into consideration in the
design of a small house, the house soon has the
character of a children’s room – toys and clutter
everywhere.

Figure 3. House for a small family.

Why did Alexander commit a great deal of his
professional life identifying patterns, writing
books about patterns, and extending the
concept of patterns beyond civil architecture?
He was attempting to lower the cognitive load of
design by exploring large design spaces on
behalf of the architect (Coplien, 1997)(
Alexander, 1964). From his perspective,

“patterns helped him to express design in
terms of the relationships between the parts
of a house and the rules to transform those
relationships” (Coplien, 1997).

This is an important concept – in fact, if one
were to take the previous sentence and replace
the word “house” with “system,” the same
concept could apply to the notion of enterprise
or system architecture patterns.

PATTERNS IN INFORMATION
TECHNOLOGY

The information technology domain is beginning
to embrace patterns. As an illustration, IBM is
using patterns in the e-business domain. IBM
has found that many customers have the same
requirements, and these requirements have
been abstracted into patterns. Their recipe steps

© Journal of Enterprise Architecture – Month Year 4

for creating an effective, run-time architecture
are (Sachdeva, 2004):

Step 1: Develop a high-level business
description

Step 2: Develop a Solution Overview Diagram
Step 3: Identify Business Patterns
Step 4: Identify Integration Patterns
Step 5: Identify Composite Patterns
Step 6: Identify Application Patterns
Step 7: Integrate a package into a solution
Step 8: Identify Run-time Patterns
Step 9: Identify Run-Time and Product

mappings

PATTERNS IN SOFTWARE
DEVELOPMENT

In the late eighties, software designers began to
apply architectural concepts (patterns) to object
oriented software development. The first book
on the subject of software patterns was
published in 1995 by Gamma, Helm, Johnson,
and Vlissides (Gamma, 1995). It detailed 23
patterns, categorized as creational, structural, or
behavioral patterns. All of these patterns are still
in use today by programmers.

Learning to define and document a pattern is not
an easy task. Martin Fowler discusses the
difficulty in defining a pattern (Fowler, 1997):

“…we have had difficulty in defining the term
pattern. We all think we can recognize a
pattern when we see it, we think most of us
would agree in most cases, but we cannot
come up with a single definition.”

He goes on to provide his own definition of a
pattern as “an idea that has been useful in one
practical context and will probably be useful in
others.”

A number of parallels can be drawn between the
use of patterns in the software engineering
community and the development of ontologies
by ontology engineers (Devedzic, 1999).
Ontologies provide skeletal knowledge and an
infrastructure for integrating knowledge bases at
the knowledge level, independent of particular
implementations. According to Devedzic,
software patterns enable the communication of
knowledge in order to solve problems effectively.
Software patterns are effective in transferring
knowledge by describing solutions to similar

problems through common ways and
techniques, regardless of the project problem
domains or implementation tools and languages.
And, using software patterns early in the design
reduces the number of changes that have to be
made later in the lifecycle. He considers some
software patterns to be “micro-architectures” that
contribute to the overall software system
architecture. That assertion is made because
software patterns are used to weave parts of the
overall software system architecture into a
whole. There are others in the software
engineering community that agree with this
belief – using multiple patterns, similar in nature
to a pattern language, to create an entire
software architecture. This concept was first
presented in Patterns Generate Architecture
(Beck, 1994) (Hanmer, 2004).

DOCUMENTING SOFTWARE PATTERNS

Software patterns have been documented in a
variety of ways, and there is no consensus in
this regard. Again, according to Fowler:

“When people write patterns, they typically
write them in some standardized format—as
befits a reference. However, there’s no
agreement as to what sections are needed
because every author has his or her own
ideas… (Fowler, 2003)

A number of pattern documentation approaches
have been developed by software engineers.
Based on a literature search, Table 1 represents
a survey of some of the most common pattern
documenting conventions in use today, most of
which come from the software domain.

DISCOVERING PATTERNS

An experienced architect begins to notice that it
is not unusual, as one abstracts a systems
behavior or capabilities; it begins to look like
other systems. That is certainly the case when
one looks at transaction based systems. The
following example was originally developed to
discuss requirement patterns and requirement
management, but it can also be used to
demonstrate the application of architecture
patterns to a sales transaction based system
(Kaffenberger, 2004). Let’s look at an example
of the application of a pattern to an information
system.

© Journal of Enterprise Architecture – Month Year 5

Pattern
Template

Patterns for
Effective Use

Cases

Architecture
Patterns

U.S. Treasury
Architecture
Guidance

A Pattern Language
for Pattern Writing

(Rising, 2003) (Adolph, 2003) (TOG0F, 2002) (TOGAF, 2002) (Meszaros, 2004)
Pattern Name Pattern Name Name Name Pattern Name*
Aliases Aliases
Problem Problem

Statement
Problem Problem Problem*

 Metaphoric
Story

 Implementation

Context Context Context Structure Context*
Forces Forces affecting

the Problem
Forces Interactions Forces*

 Consequences Indications
(symptoms)

Solution Solution Solution Solution*
Resulting
Context

 Resulting
Context

Assumptions Resulting Context

Rationale Rationale Rationale Rationale*
Known Uses
Related Patterns Related

Patterns
 Related Patterns

Sketch Picture
Author(s) Acknowledgements
Date
Email
References
Keywords
Example Examples Examples Examples*
 Known Uses Code Samples

* - required, italics – optional

Table 1. A Survey of Pattern Documentation Schemas.

When developing a DFD (Data Flow Diagram)
for the first level of decomposition for a small
bookstore in England. The diagram in Figure 7
reflects the interactions with the customer, the
shop processes, and the data stores. In fact, the
individual that developed this example really
created a hybrid use case/DFD. It is the first
level of decomposition of “Customer wants to
buy a book”. The numbered circles represent the
processes while the items that have horizontal
bars above and below the titles represent some
form of data storage – whether it is a customer
database, a book inventory, or a collection of
sales transactions. Finally, each arrow
represents the flow of information. From this
diagram, it is easy to trace the path from a
customer ordering a book, checking the
customer’s credit, approving the order, checking

the book availability, placing the order, and
collecting the money for the book; as well as the
paths for a number of other interactions.

As an architect looks closer, it becomes
apparent that some of the actions can be made
more generic (more abstract), and the initial
example of buying a book can be abstracted to
address the purchase of almost any product.
Performing this abstraction, the architect may
end up with a “customer purchase” pattern
similar to the one shown in Figure 8.

The resulting pattern is generic enough to begin
the design of a customer purchase application
for almost any domain. The value is that the
pattern has been proven over time, and
therefore carries a reduced risk of

© Journal of Enterprise Architecture – Month Year 6

implementation for any architect willing to adapt
it into their enterprise architecture.

Figure 7. Book purchase diagram.

Figure 8. Customer purchase pattern.

To demonstrate the application of this pattern to
a new domain, an architect could make changes
to the nouns in the customer purchase pattern
(Figure 8) to make it useful in a specific domain -
whether it is the purchase of an automobile, a
service, or even to register for college course.
To demonstrate this, Table 2 articulates the
minor modifications necessary for this pattern to
suggest an initial high level architecture for a
class registration service.

Change this noun To this noun

Customer Student

Product Class

Order Registration

Discount Scholarship

Table 2 – Applying the Customer Purchase
Pattern.

In Figure 8, everywhere the word “customer”
appears, the architect would replace it with the
noun “student”. Where the word “product”
appears, “class” would be put in its place, and
so forth. Additionally, the architect may want to
extend the pattern by adding the ability to keep
track of students in each class to system.
Finally, it may not make sense to back order
classes, so the architect may remove the Back
Order and Suppliers functionality from the
pattern. The use of such patterns at this level
may significantly enhance the R&D efficiency
associated with architecting, while also
enhancing characteristics such as commonality,
testability, and system maintenance.

CAPTURING IMPLICIT KNOWLEDGE
WITH PATTERNS

Within industry and government, a growing
number of practicing architects have acquired
considerable architecture expertise via formal or
informal mentoring, and work experience in the
work environment. This corporate systems
knowledge is captured in explicit ways through
mediums such as handbooks, lessons learned
repositories, templates and tools, methods and
practices, and metrics and measures. A
significant component of this corporate
knowledge, however, is implicit and
undocumented, and largely represented through
the technical leaders within an organization.
This implicit knowledge is useful to others only if
it is shared in a manner that allows its
application. The holder of that implicit knowledge
may become a bottleneck in applying systems
experience on current or future projects (Hole,
2005). Patterns offer a formal method of
documentation to capture aspects of such
knowledge. If a pattern exists only in the form of
implicit knowledge, it is not accessible by others
and cannot be used by others without some
form of repeated storytelling to convey the

© Journal of Enterprise Architecture – Month Year 7

pattern to others by the holder of this
knowledge.

While a pattern is reusable by the person who
first recognizes it, the real power and value of a
pattern is derived only if it can be packaged for
use by others. Though a pattern can be
transferred through verbal communications,
such as storytelling, it is more accurately and
reliably transferred through more formal forms of
documentation.

POTENTIAL BENEFITS OF
ARCHITECTURE PATTERNS

Numerous benefits will result from this growing
interest in architecture patterns. One significant
derived benefit of patterns, based on
precedence in other disciplines, should be
improved communications between the various
stakeholders. Improved team communications
between members of the architecture team and
the design teams was the result of using
patterns while developing open source software
(Hashler, 2004). Another benefit identified from
the same study was that patterns facilitated
application of sound architectural concepts and
implementations. As the discipline of
architecting assumes the challenge of
developing increasingly complex systems, there
is a need for a common lexicon between
systems architects. Describing architectures in
the context of known and understood patterns
should foster better and more consistent
understanding across the many stakeholder
communities. Systems architecture patterns may
also enable implementation of common design
features across systems (reuse) leading to
enhanced R&D efficiency, and lower ownership
costs through reduced efforts with regard to
system testing, integration, and maintenance.
In communities that have adopted the use of
patterns, the patterns often become
standardized through multiple implementations,
presentations at research and professional
conferences, and publication in research
journals. This standardization fosters reuse of
designs and even code that might be generated
from the architecture patterns. Such reuse can
improve development efficiency and productivity
(Coplien, 1997). Based on Coplien’s study, one
could argue that documenting current patterns
may reduce the documentation costs and
complexity for any organization that elects to
pursue systems engineering patterns. Finally,

architectural patterns may help control the
complexity of architectures by standardizing on
well known and practiced patterns.

ARCHITECTURE PATTERN RESEARCH

At this point, we have established that there are
many technical disciplines using patterns to
manage complexity and reduce risk. Research
into the applicability and use of patterns has
been underway within the systems architecting
and engineering community (Cloutier, 2005)
(Cloutier, 2005b).

Once that research established there may be
potential benefits supporting the use of patterns
at this level, the next question to be asked was
“does the systems architect need a different
solution for documenting patterns?” This topic
was discussed during a colloquia conducted at
Stevens Institute of Technology in 2005
(Cloutier, 2005a). Two issues arose from that
session that indicated that a unique systems
architecture approach is necessary. The first
issue is abstraction. The architecture of a
system (whether it is an enterprise system within
a business or a complex system to be marketed)
requires a higher level of abstraction than that
found in the software that may be a part of the
system. Additionally, many systems include a
combination of hardware, software and other
resources which may result in pattern
uniqueness. This abstraction may make it more
difficult to use a simple approach to
documenting patterns. The second issue that
arose is related to the first – patterns need to
address interfaces to non-software parts (if they
exist) in the pattern description. This notion of
interfaces has not been explicitly addressed in
past software pattern discussions.

A survey was conducted in late 2005 to help
identify requirements for a methodology for
documenting architecture patterns . The survey
was provided to over 70 individuals that either
has experience using explicit patterns (e.g.
software patterns), indicated they use implicit
patterns in their work, or has done serious
research and thought on the use of patterns for
systems engineering/systems architecting. The
researcher received 28 useful responses, and a
couple of responses where there was a
significant amount of narrative and input
provided, but the provided data was not

© Journal of Enterprise Architecture – Month Year 8

consistent with the survey data, and therefore
was not used in this analysis.

SURVEY RESPONSES

The demographics of the responses show a
number of notable aspects. First, the responses
came from around the world. Eight countries
are represented in this data as shown Table 3.

Table 3 - Survey Response Distribution.

The self-described roles of the respondents are
shown in Table 4 Some responses
characterized their roles with two descriptors –
for instance, Director and Architect, which
causes the data to look like there are more roles
than responses.

Table 4 - Respondent's Role.

The industries represented by the respondents
are shown in Table 5. The largest industry
represented is the aerospace industry. This is
not surprising with aerospace representing
large, complex systems engineering challenges.
There are also ten other industries represented
in this data.

Table 5 - Industries Represented by Survey.

Those responding to the survey comprised a
very experienced group. While the level of
experience ran from 2 years to 48 years, the
cumulative years experience represented by the
group totals 569 years. Of the 28 responses
received, 22 had more than 15 year professional
experience, and 18 of the responses had more
than 20 years of professional experience.

Respondents Level of Experience

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Response

Y
ea

rs
 o

f E
xp

er
ie

n
ce

Ave. Years Experience = 20.3 years

Table 6 - Respondents Experience Profile.

DOCUMENTING ARCHITECTURE
PATTERNS

The data demonstrated that systems engineers
and architects are most interested in the
rationale for the pattern followed by an example
of how to apply the pattern, and known uses of
the pattern. The researcher broke the data into
three distribution groupings to determine the
highest rated sections. The distribution provided

© Journal of Enterprise Architecture – Month Year 9

for better visibility, facilitating a more clear
understanding of which sections were deemed
the most important, while also being able to
identify which sections are deemed necessary to
the majority of respondents though not
necessarily having the same degree of
importance.

There are several sections that seem to appear
on all pattern documentation approaches. Since
these sections were pervasive and logical, and
they existed in all pattern templates found by the
researcher, they were provided in the survey as
a necessary given. Those sections are: pattern
name, context of the problem, problem
description, pattern solution.

Based on the analysis of the survey data, the
results indicate that other sections necessary to
document architecture patterns include:

• Aliases • Forces • Interfaces
• Resulting

context
• Related

patterns
• Date
Documented

• Known
uses

• Sketch • Author(s)

• Email • Rationale • References
• Keywords • Example

Another topic addressed by the researcher in
the survey was to determine what form of
graphic representation should be used in
documenting patterns. Within the surveyed
community, the two most common graphical
notations are related with the two decomposition
approaches (or methodologies) – functional
decomposition and object decomposition. The
following table represents the diagrams normally
associated with the functional decomposition
methodology, and the total number of survey
responses that believed patterns should
graphically represented with these types of
diagrams (Table 7).

The second methodology originated in the
software community and is referred to as object
decomposition (sometimes referred to as logical
decomposition). Object decomposition is
documented using the Unified Modeling
Language (UML). UML is actually methodology
agnostic, but it almost always used with an
object oriented methodology. The survey asked
about what UML diagrams would be most useful
in documenting patterns and the result is shown
in Table 8.

Table 7 - Functional Diagrams for Patterns

Table 8 - UML Diagrams for Patterns.

Based on this data, it appears the most useful
graphical diagrams for use in documenting
architecture patterns are FFBD, Block Diagram,
DFD, N2 and IDEF0 for the functional
decomposition. For the object decomposition
approach, the most useful UML diagrams may
be Use cases, Sequence diagrams, Class
diagrams, Activity diagrams, Collaboration
diagrams and Composite Structure diagrams.

EXAMPLE: THE C2 PATTERN

The following example takes the command and
control (C2) process, sometimes referred to as
plan, detects , control and act. Though this
pattern is normally associated with designing
systems for the military, it is easily applied to the
design of a police or fire organization for large
cities like Los Angeles or New York. It could also

© Journal of Enterprise Architecture – Month Year 10

be applied to a command and control system for
transportation systems like the railroad or a
trucking fleet with a little creativity.

As in this case, the pattern documentation may
include a model from a modeling tool such as

Vitech Corporation’s Core (used to generate
these diagrams) or a UML modeling tool. The
inclusion of a model file certainly will help “jump
start” the new architecture.

Documenting an Architecture Pattern

Pattern Name: Perform C2, Perform Command and Control

Aliases: None known

Keywords: Command and control, Plan, Detect, Control, Act, C2.

Problem Context: Does not address “Prepare” precondition (though one might argue that prepare
and plan go together) nor “Assess” post condition

Problem
Description:

In command and control (C2), the situation is typically managed in identifiable
phases. And, the situation may move back and forth between the stages. Those
stages are Plan/Detect/Control/Act

Forces: Terminology may vary from one domain to the next, and should be adapted in
the application of the pattern

Pattern Solution: This pattern provides the basis for developing the command and control (C2)
interfaces and information that moves through the stages of C2. It provides the
A0 Context and the first level of decomposition using IDEF0.

Model: See next page

Interfaces: Information flows between the stages of this pattern, as well as feedback loops.
Some information is generated only in a particular stage and then output in the
form of reports. Names of information can be modified as required by specific
domain application.

Resulting
Context:

Further work is required to define the tasks to be performed within each stage,
and the allocation of tasks to systems, hardware, software or people.

Example: This pattern may be used in the modeling of a C2 system for military or
paramilitary operations system (such as police or homeland defense) where
there would be a planning phase, a detection of an situation or “bad guy”, an
identification and controlling or managing of the information, and a required
action to perform the mission. May even be extended to motor vehicle fleet
operations.

Known Uses: Command and Control applications

Related patterns: OODA (Observe, Orient, Decide, Act)

References: MCDP 6 Marine Corps Command and Control Handbook

Pattern
Rationale :

This is a time tested doctrine used by the military, that may be applicable to
other domains

Author(s): Harry Johnson Ph.D., Ken Hartnett, Satya Moorthy, Robert Cloutier, 2006.

Pattern Description: Perform C2 Page 1 of 3

© Journal of Enterprise Architecture – Month Year 11

Documenting an Architecture Pattern

Pattern Description: Perform C2 Page 2 of 3

Note: At this level of the IDEF0 diagram, the
architect documenting the pattern identifies the
inputs and outputs (left to right). The resources
are drawn from the bottom. In this case, it may
be people or equipment. The controlling factors
are drawn from the top. Examples of controls
may be strategies to be employed, guidance
from the commander or police chief.

Customizations when implementing this pattern
may be to change the term “Tracks/Targets of
Interest” to “suspect” for a police C2 system, or
maybe “truck number” for a trucking fleet

implementation. Sensor data may be humans in
a stakeout, military satellite tracking (or quite
frankly, satellite tracking in the form of a GPS
device on a car or truck). Examples of external
data may be intelligence, or a tip from an
informer which will have some impact on the
operation.

Tracks/Targets of Interest
Tasking

Strategy

Situational Data
Sensor Data
Resource Assignments
Req for Information
Reports
Raw Intel
Plans
Orders
Mission Support Requests
Mission Status
Mission Assessment

External Guidance

External Data

Environmental Data

Doctrine

Resources

Coordination Data
Assessment (BDA)0

Perform C2 (Pattern)

Date:
Tuesday, January 17, 2006

Author:
Robert J. Cloutier

Number:
0

Name:
Perform C2 (Pattern)

© Journal of Enterprise Architecture – Month Year 12

Documenting an Architecture Pattern

Pattern Description: Perform C2 Page 3 of 3

Note: There is a lot of data here. Each box
represents a decomposition of the perform C2
top level function. Outputs are taken from one
function and become inputs to another function.

Though an architect documenting a pattern of
this magnitude could do a further decomposition
of each of these functions into lower level
functions, the authors experience has shown

that the detail begins to become too detailed,
and less able to be abstracted.

Tracks/Targets of Interest

Strategy

Situational Data

Tasking

Situational Data

Sensor Data

Sensor Availability

Resource Assignments

Req for Information
Reports

Raw Intel

Plans
Orders

Mission Support Requests

Mission Status

Tasking

Situational Data

Situational Data

Situational Data

Sensor Availability

S&D Reports

Resource Assignments
Resource Assignments

Resource Assignments
PlansPlans Plans

Planning Reports

Orders

Mission Support Requests

Mission Support Requests

Tracks/Targets of Interest

Tasking
Mission RequirementsMission Requirements

Mission Assessment

Intel Products

Immediate Tasking

External Guidance

External Data

Environmental Data

Doctrine

Coordination Data

C2 Resource Availability

C2 Reports

A...

Analysis

Resources

Mission Assessment
Mission Assessment

Intel Products

Engagement Report

Coordination Data

Analysis

1

Plan
(Operations)

1

2

Detect
(Surveillance &

Tracking)

2

3

Control
(Classification

& Identification)

3

4

Act
(Execute/
Prosecute
Mission)

4

© Journal of Enterprise Architecture – Month Year 13

A PROPOSED PATTERN HIERARCHY

Patterns can be applied at different levels of an
architecture or system based on the
appropriateness of the pattern and the existing
maturation of the system being developed. For
instance, within the software community, there
are system patterns (sometimes referred to as
architecture patterns by the software folks),
design patterns and idioms. Figure 9 represents
a pattern hierarchy proposed by van Zyl and
Walker for software systems (van Zyl, 2004).

vanZyl Pattern Hierarchy package MiscUMLDrawings {2/2}

SystemPatterns

SystemArchitecturePatterns

ComponentPatterns

DesignPatterns

System Requirements
Analysis and Design

Software
Requirements
Analysis

Software
Design

Figure 9. van Zyl Pattern Hierarchy.

It is important to recognize that in their work,
when they refer to the system, they are referring
to the software system. Their work may be
extendable to the broader system, or system of
systems architecture. System level patterns may
be applicable when representing the highest
levels of a system to represent an entire system
or a part of a system. They may also include
structure and system boundaries. Based on
precedence from other disciplines, use of
patterns in systems engineering and architecting
may provide the foundation for a more common
lexicon leading to improved communications
between the various stakeholders, while also
enhancing the R&D efficiency on complex
development programs. For instance, the
Publisher-Subscriber pattern, the Layers pattern
and the Client-Server pattern were all first
published as software patterns (Buschmann,
1996). Now, most enterprise architects
understand those patterns, and use them to
describe systems – a common lexicon.

The pattern hierarchy proposed by van Zyl
(2001) can be extended for broader application
and increased relevance to larger systems.

Extending this hierarchy, Figure 10, shows the
five types of system architecture patterns
identified in this research (Cloutier, 2005). It also
provides a necessary bridge to show the
relationship between patterns that the Business
process groups have been identifying for years
and the software patterns we have already
discussed. In this proposed taxonomy, system
architecture patterns are broken into:

1. Structural patterns
2. System Requirements patterns
3. Systems Engineering Activities patterns
4. Systems Engineering Roles patterns
5. System Process patterns

Structural patterns provide a physical pattern to
follow when designing a part of the architecture.
System requirements patterns prescribe the
format of a properly formed requirement, or a
collection of requirements that can be reused to
describe desired functionality. Activities patterns,
also described as organizational process
patterns, indicate how the process of
architecting or systems engineering is
performed. Finally, roles patterns help describe
how the architecting role is performed.

WHEN TO NOT USE ARCHITECTURE
PATTERNS

The discussion thus far has focused on the
positive aspects of documenting and using
patterns and the potential advantages of
applying them within the system architecting
discipline. For completeness, this discussion
should also present the likely pitfalls associated
with the application of patterns.

The first argument against the use of patterns
relates to the notion of implicit structural
constraints inherent in the use of patterns –
particularly with highly independent and creative
individuals, and the related impact on
innovation. This concern is valid and must be
balanced – the intent is to leverage and reuse
existing solutions (albeit, abstract) when
applicable, and to allow the necessary degrees
of freedom to explore new and unique
implementations when required and desired to
ensure an atmosphere that encourages
creativity.

The second argument may be described as “so
what?” Sometimes, when an expert architect

© Journal of Enterprise Architecture – Month Year 14

Figure 9. A proposed system pattern hierarchy.

Pattern Hierarchy 1-15-2006 package PatternRelationships {1/2}

OrganizationPatterns

BusinessPatterns

SystemArchPatterns

SystemAnalysisPatterns

SystemDesignPatterns

SW_ArchPatterns

SW_AnalysisPatterns

SW_DesignPatterns

SystemRqmnt

SW_RqmntPatterns

HWDesignPatterns

CreationalPatterns

BehavoiralPatterns

StructuralPatterns

MissionPatterns

Structural

SysEngRoles

SEActivity

 System Architecture Pattern Types
Structural - Patterns on how to build
SysEngRoles - Patterns for roles
SystemRqmt - Patterns for requirements
SEActivity - Patterns of SE process
SystemProcess - Patterns of processes
 performed by the system

SystemProcess

SystemTestPatterns

SW_TestPatterns

©Robert J. Cloutier, 2006

HW_RqmntPatterns

Operational_Patterns

© Journal of Enterprise Architecture – Month Year 15

looks at patterns, the reaction is – “so what, I
knew that”. The fact of the matter is that within
their domain of expertise, patterns are of little
use to experts. This attitude results in lack of
inertia when it comes to adopting the use of
patterns – particularly in regard to the
documentation and validation of patterns by
these experts for use by others. Organizational
motivation usually becomes necessary. From
the perspective of preserving, sustaining, and
evolving corporate knowledge, patterns are a
powerful medium for capturing aspects of
implicit knowledge in a form that is pragmatic.

There are situations when it is inadvisable to use
architecture patterns. These include:

• New or unique requirements
(unprecedented systems) preclude the
existence of a pattern,

• Unique solution (unprecedented concepts),
• When the pace of technological change

does not warrant the use of patterns

For designs that are proven and effective, and
addressing problems common across multiple
systems and domains, there should be a strong
motivation to leverage the benefits that can
accrue from the application of patterns.

SUMMARY AND CONCLUSIONS

Patterns are models, or abstractions of reality.
Today’s systems have become extremely
complex. It is difficult, if not impossible, for a
systems engineer to mentally juggle all the
details of a modern complex system. As already
demonstrated, patterns can exist at multiple
levels. During the course of systems
architecture, design and implementation, a
project team may use systems architecture
patterns, process patterns, design patterns,
implementation patterns (for software code),
machine patterns (to cut metal for cabinets), test
patterns, and validation patterns. At each level
of the architecture, the pattern should contain
the appropriate level of detail for the stage in
which it is applied. However, patterns are not
silver bullets. But they can be a powerful tool in
the architect’s toolbox. They help solve difficult
problems by leveraging existing knowledge, if
this existing knowledge is documented in a
manner that facilitates this process.

In communities that use patterns, the patterns
often become standardized through use in
designs and technical discussion, presentations
at research and professional conferences, and
publication in research journals. This
standardization has fostered reuse of
architectures, designs and even code.

As was shown in the C2 pattern, sufficient detail
can be captured in the pattern to enable an
architect less familiar with the process to begin
architecting a solution to a system with similar
requirements. However, as the architect
documenting the pattern “drills down” while
documenting a complex pattern, a level of detail
is reached whereupon the necessary detail
begins to obfuscate the value of pattern
abstraction. This is the point in which no further
data should be added to the pattern An
additional benefit to patterns at this level is the
speed of knowledge transfer to train new
systems engineers faster than working on
multiple programs over several years. Patterns
are one way to help minimize the possibility that
details will not “fall through the cracks”.

Continued research should be done on
architecture patterns. It would be interesting to
see if agent based modeling of the use of
patterns may help in the quantification of the
value of patterns in the architecting process.

AUTHOR BIOGRAPHIES

Rob Cloutier
Rob works for Lockheed-Martin Corporation in
Moorestown, NJ where he is a Principle
Systems Engineer in the System of Systems
Architecture organization. He is responsible for
developing architecture for complex systems.
Rob is a Systems Engineering Doctoral
Candidate and occasional guest lecturer at
Stevens Institute of Technology in New Jersey.
He is also developing an Object Oriented
Architecture and Design course for Stevens
Institute.

Rob holds a B.S. from the United States Naval
Academy and an M.B.A. from Eastern University
where he is an adjunct professor. He has over
20 years experience in systems engineering,
software engineering, and project management
in both commercial and defense industries.

© Journal of Enterprise Architecture – Month Year 16

Dinesh Verma
Dinesh received his Ph.D. and the M.S. in
Industrial and Systems Engineering from
Virginia Tech. He is currently serving as the
Associate Dean for Outreach and Executive
Education, and Professor in Systems
Engineering at Stevens Institute of Technology.
He concurrently serves as the Scientific
Advisory to the Director of the Embedded
Systems Institute in Eindhoven, Holland. Prior
to this role, he served as Technical Director at
Lockheed Martin Undersea Systems, in
Manassas, Virginia, in the area of adapted
systems and supportability engineering
processes, methods and tools for complex
system development and integration.

Before joining Lockheed Martin, Verma worked
as a Research Scientist at Virginia Tech and
managed the University’s Systems Engineering
Design Laboratory. While at Virginia Tech and
afterwards, Verma continues to serve numerous
companies in a consulting capacity, to include
Eastman Kodak, Lockheed Martin Corporation,
L3 Communications, United Defense, Raytheon,
IBM Corporation, Sun Microsystems, SAIC,
VOLVO Car Corporation (Sweden), NOKIA
(Finland), RAMSE (Finland), TU Delft (Holland),
Johnson Controls, Ericsson-SAAB Avionics
(Sweden), and Motorola. He served as an
Invited Lecturer from 1995 through 2000 at the
University of Exeter, United Kingdom. His
professional and research activities emphasize
systems engineering and design with a focus on
conceptual design evaluation, preliminary design
and system architecture, design decision-
making, life cycle costing, and supportability
engineering. In addition to his publications,
Verma has received one patent and has two
pending in the areas of life-cycle costing and
fuzzy logic techniques for evaluating design
concepts. Dr. Verma has authored over 85
technical papers, book reviews, technical
monographs, and co-authored two textbooks:
Maintainability: A Key to Effective Serviceability
and Maintenance Management (Wiley, 1995),
and Economic Decision Analysis (Prentice Hall,
1998). He is a Fellow of the International
Council on Systems Engineering (INCOSE), a
senior member of SOLE, and was elected to
Sigma Xi, the honorary research society of
America.

REFERENCES

Adolph, S. Bramble, P. (2003). Patterns for
Effective Use Cases. Boston: Addison Wesley.

Ambler, Scott, “The Process Patterns Resource

Page”. Retrieved October 28, 2004 from
http://www.ambysoft.com/processP
atternsPage.html

Alexander, Christopher. (1964). Notes on the

Synthesis of Form. Cambridge: Harvard
University Press.

Alexander, Christopher. (1977). A Pattern

Language. New York: Oxford University
Press.

Alexander, Christopher. (1979). A Timeless Way

of Building. New Your: Oxford University
Press.

Baer, William C. (2003). “How ‘Pattern Books’

Fueled England’s First Speculative Real
Estate Market”. Harvard Business School
Working Knowledge eZine, 2003. Retrieved
May 7, 2004 from
http://hbsworkingknowledge.hbs.e
du/tools/print_item.jhtml?id=331
3&t=finance

Beck, K., Johnson, R. (1994). “Patterns

Generate Architectures”. Proceedings
Object-Oriented Programming 8th European
Conference, ECOOP ’94 (Bologna, Italy,
1994) Springer-Verlag, pp. 139-149.

Bernard, Scott. (2005) An Introduction to

Enterprise Architecture (2nd Edition).
AuthorHouse. Bloomington, IN.

Buschmann, F., R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal. (1996). Pattern-
Oriented Software Architecture: A System of
Patterns. West Sussex, England: John Wiley
& Sons Ltd.

Cloutier, Robert J. (2005). Application of

Patterns to Systems Architecting.
Proceedings and presentation, 2005
Telelogic Americas User Group Conference,
October 2005.

© Journal of Enterprise Architecture – Month Year 17

Cloutier, Robert J. (2005a). Survey on the Use
of Patterns in Systems Engineering and
Architecting Research Colloquium. CSER
2005. March 23, 2005.

Cloutier, Robert J.(2005b). “Towards the

Application of Patterns to Systems
Engineering”. CSER 2005. March 23-25,
2005.

Coplien, James O. (1997) “Idioms and Patterns

as Architectural Literature”. IEEE Software
Special Issue on Objects, Patterns, and
Architectures. January 1997.

Devedzic, Vladan. (1999) “Ontologies: borrowing

from software patterns”. Intelligence, Vol.
10, number 3, pages 14-24. ACM Press,
1999. Available at:
http://doi.acm.org/10.1145/31896
4.318968

Fowler, Martin. (2003) “Patterns”. IEEE

Software. March/April 2003.

Gamma, E., Helm, R., Johnson, J., Vlissides, J.,

(1995). Design Patterns: Elements of
Reusable Object Oriented Software. MA:
Addison-Wesley.

Hahsler, Michael. (2004). Free/Open Source

Software Development. Edited by Koch
Stefan. Idea Group Publishing. Pages 103-
124.

Hanmer, Robert S. and Kocan, Kristin F., (2004)

“Documenting Architectures with Patterns”
Bell Labs Technical Journal 9(1), 143-163,
Wiley Periodicals, Inc., 2004.

Hole, Eirik. (2005) “Architectures as a

Framework for Effective and Efficient
Product Development in a Dynamic
Business Environment”. Proceedings of the
2005 Conference on Systems Engineering
Research, March 2005.

Kaffenberger, Ruediger. (2004). “The Difference

– On the Use of Pattern-Based
Requirements”. 14th Annual International
Symposium Proceedings, INCOSE 2004.

Meszaros, G. Doble, J. “A Pattern Language for
Pattern Writing”. Retrieved May 28, 2004
from (though available from numerous
websites)
http://webclass.cqu.edu.au/Patte
rns/Resources/writers/language/

Rising, Linda, PhD. (2003). Pattern Template.

AG Communications Systems (A subsidiary
of Lucent Technologies). Retrieved May 28,
2004 from
http://www.agcs.com/supportv2/te
chpapers/patterns/template.htm

Sachdeva, N. and Godlszmidt, G. (2004). “On
demand business process life cycle, Part 2:
Patterns for e-business recipe”. IBM
Developerworks Website. 24 Nov 2004.
Retrieved June 5, 2005 from
http://www-
106.ibm.com/developerworks/library/ws-
odbp2/

TOGAF. (2002). “Architecture Patterns”. The

Open Group Architecture Framework
(TOGAF) Website. Retrieved May 27, 2004
from
http://www.opengroup.org/archite
cture/togaf8-
doc/arch/p4/patterns/patterns.ht
m

van Zyl, Jay & Walker, A.J. (2004). “A Pattern

Architecture: Using Patterns to Define
Overall Systems Architecture”. Retrieved
October 22, 2004 from
http://osprey.unisa.ac.za/saicsi
t2001/Electronic/paper37.pdf

Zachman, J. (1987). A Framework for

Information Systems Architecture. IBM
Systems Journal. Vol. 26, No. 3, pp. 276-
290.

