
Modeling a System of Systems Using UML

Rob Cloutier, Lockheed-Martin Corporation, robert.j.cloutier@lmco.com
Andrew Winkler, Lockheed-Martin Corporation, andrew.j.winkler@lmco.com

John Watson, WOW IS, john.watson@lmco.com
Clay Fickle, Lockheed-Martin Corporation, clay.fickle@lmco.com

Abstract
The increased complexity of systems today

has brought about the notion of “Systems-of-
Systems”. The traditional Systems Engineering
approach to modeling complex systems is to
perform a functional decomposition to determine
the major functions of the system and once that
is accomplished, to employ the same technique
again to further break the larger functions into
smaller ones. This approach tends to bias the
system description to the engineer’s perspective
rather than to the user perspective and can lead
to technologically sophisticated systems that
may not meet user needs. In contrast, this paper
presents a modern object oriented systems
engineering (OOSE) approach to the problem of
system of system specification and
decomposition. The approach determines how
the user expects the system to perform in the
many different situations in which it will be used
and creates a use case model capturing these
scenarios and a class model capturing domain
information and functionality. These two UML
models provide sufficient information to create a
partitioning of the system into subsystems, with
each subsystem defined by a survey of its own
set of use cases and domain information classes.
This survey constitutes a high level specification
of the subsystem. The surveyed subsystem use
cases collaborate to accomplish the system level
use cases and the technique for subsystem
identification is iterative.

1.0 Introduction
Modeling a system of systems requires one

to build multiple models as the design is
detailed. It is important to understand the
hierarchy of these models, and the relationship

of the various models to one another. The top
level model is the enterprise model, or the
System-of-Systems model. This model
represents the context in which the system being
built resides. The next model to be created is the
system model itself. The system model specifies
the overall information and functionality of the
system, and will allow the architect to begin to
allocate functionality to the subsystems logically
decomposed within the system. Finally, the
subsystems are modeled, capturing the services,
components and classes for each subsystem.
Figure 1 represents this model hierarchy. It is
important for the reader to recognize that
depending on the complexity of the system, the
subsystems may need to undergo further logical
decomposition into smaller subsystems that
might be referred to as segments, sub-segments,
etc. The goal is to reach a manageable definition
without undo complexity which can serve as a
basis for design modeling.

The steps to be discussed in this paper are
listed below. These steps are written from the
perspective of extracting Subsystem models (use
case and class survey) from a System model.
These same steps can be followed to extract the
System model from the Enterprise Model,
however frequently in practice the System
boundaries are predefined for the application. In
this case, it is still very important to produce the
enterprise model as a basis for extracting System
use cases and for producing the initial set of
domain classes.

The first two steps define the System model
in detail. The next three steps extend the system
model with the goal of identifying subsystems
and specifying each subsystem with a use case
survey and domain object model survey.

mailto:robert.j.cloutier@lmco.com
mailto:andrew.j.winkler@lmco.com
mailto:john.watson@lmco.com
mailto:clay.fickle@lmco.com
Rob
Text Box
Published in the Proceedings for the Inaugural Annual Conference on Systems Integration, March 12-14, 2003.

Figure 1 – Model Hierarchy

1. Define System model context
2. Develop System Use Case and Domain

Class Models
a. Survey System use cases
b. Capture domain “language” in class

model
c. Detail System use cases using

activity diagrams
d. Enhance activity diagrams with

domain object instances
3. Recapture activity diagrams as sequence

diagrams using methods on domain
objects

4. Group domain classes together to form
Subsystem class survey based on class
cohesion and loose subsystem coupling
as defined by the sequence diagrams.

5. Identify sequence diagram sub­
sequences to extract Subsystem use case
survey.

6. Produce Subsystem context diagram
based upon use case survey actors.

For the purposes of this paper the Enterprise
model will be a naval surface ship operating
within a naval battlegroup. The Navy Surface
Ship is a System-of-Systems including Weapons
System, Sensor System, Crew, and Command &
Control System. For our sample problem the
Command & Control System will be the System
that needs to be developed. With the exception
of the Crew, the existing systems and system

interfaces must be maintained without change.
Figure 1a represents the Systems within the
naval ship. We will show how to use the
Enterprise model to produce a survey of the use
cases, domain classes and context diagram for
the Command & Control System. We will then
discuss how the same steps could be followed to
identify a set of Subsystems of the Command &
Control Software System.

Figure 1a – Systems within the Navy Surface
Ship System-of-Systems

2.0 Define Enterprise Context
This approach requires one to first understand
the System-of-Systems, the enterprise, in which
the System will operate. This is done by creating
a context diagram of the enterprise. The
enterprise context diagram is an anatomy
diagram in which the enterprise to be modeled is
placed in the center of the diagram with the
external systems connected through links to the

enterprise. Figure 2 represents a simple
enterprise context diagram. It creates the
boundary of the system.

Battle gro up

Logis tics
Enviro nm e nt

Com m and Authority

ipN a vy Su rfa ce Sh

Figure 2- Enterprise Context Diagram

2.1 Develop Enterprise Use Case and
Domain Object Models

The development of the Enterprise Use Case
Model and Domain Object Model are tightly
coupled and highly iterative activities. But, the
process “begins” by developing a survey of the
Enterprise use cases that are relevant to the
Command & Control System. Then the use
cases are detailed using activity diagrams and
the Domain Object Model is built. Finally, the
activity diagrams are enhanced with domain
object flows.

2.2 Enterprise Use Case Survey
A use case survey is a list of use cases where

each use case is described in a few sentences and
the primary actors for the use case are identified.
Developing the Use Case Survey, using UML
use case notation, can be done in a variety of
ways, but we have found it is best accomplished
through interviews with domain experts/subject
matter experts. Alternately, the domain experts
can be the ones actually creating the models.
The goal is to capture what the primary actors
need from the Enterprise or what the Enterprise
needs to do for them, and how the secondary
actors need to contribute to meet this goal. Each
of these associated sets of needs or primary actor
goals becomes a use case. Examples of this in
the context of this paper include Perform Air
Self Defense and Re-supply Ship, represented in
Figure 3.

Figure 3- Enterprise Use Cases

2.3 Domain Object Model
A Domain Object Model is a set of logically

grouped Classes and their relationships captured
on class diagrams, where each class represents a
significant piece of domain information. At this
point in the process, the classes do not have
methods and may not have attributes, but each
class has a clear, written definition. The classes
include real world information the users depend
on to perform their tasks which are represented
in the use cases. Information can take many
forms both external and internal to the system.
Examples of this external information in the
context of the navy ship include publications,
documents, electronic messages, hand written
logs. Examples of internal information include
Tactical Picture other entities being tracked by
the sensors, plans, and engagement policies. We
have found interviews with domain experts an
excellent source for the identification of classes.

The DOM provides three major benefits.
They are:

1. A mechanism to couple what may seem
to be a loosely related set of use cases
by virtue of the information’s
persistence

2. Provide the framework for the
development of analysis and design
classes later in development.

3. Precise definition of the System
vocabulary from the user perspective

In our example the Systems comprising the
Enterprise Model are known, so each internal
class is assigned to the System that “owns” the
information. Emphasis is placed on identifying
external classes and classes owned by the C2
System.

Figure 4 – Domain Object Model

For detailed reasons that will be noted later,
add a proxy class representing each System.
Figure 4 is an example of a DOM.

event relationships that capture the interactions
between the Systems and the external actors. It
is important to note that activity diagrams are

2.4 Detail Use Cases with Activity not data flow diagrams, as activity diagrams
show the flow of events not the flow of data. An Diagrams example of an activity diagram for “Perform Air

An activity diagram details a use case by Self Defense” is found in Figure 5.
capturing its various scenarios. The activity
diagrams are made up of objects, activities, and

Figure 5 – Activity Diagram

In our example, create an activity diagram
for each use case showing the interaction of the
System-of-System systems, paying particular
attention to the C2 System since this is the
system we are building. Since the set of Systems
that compose our Enterprise Model are known,
the activity diagrams are “white box” diagrams,
meaning that a swim lane is added for each
system that participates in the use case. Since
we will be detailing only the C2 System, the
focus is placed on that system. As with the use
case survey and DOM, domain experts are a
vital source of information for the development
of the activity diagrams.

2.5 Add Object Flows to Use Case
Activity Diagrams

It was mentioned earlier in this paper that
the DOM and the Activity diagrams are

developed together and iteratively. As activities
are identified in the activity diagrams, the user
needs to ask what information is used during this
activity. If the class already exists an object
instance of that class is added to the activity
diagram and placed in the swim lane that owns
the information.

Since in our example problem we are only
detailing the C2 System, emphasis should be
placed on the activities in that swim lane. If the
class doesn’t exist, a new class is added to the
DOM.

Figure 6 is an example of an Activity
diagram with objects. Flow arrows show when
objects are used or modified in association with
an activity. Figure 6 represents the same
activity diagram in Figure 5 with objects
included.

i

Deci

l

ll

i i

ions

l

[]

[]

i l

l

l

l

Asses s
Sit uat o n

de to
Engage

Se ect Weapon

current : Inte egence
Data

current : Engagem ent
Policy

Perform Air Self Defense

Prov de Tact cal
Picture

Proved Weapon
Opt

Perform Batt e Dam age
Assessm ent

Still Threat

 No L onger Thr eat

 : Tact ca
Picture

new :
Engagem ent

Engage Target

avai able :
Weapon

ca culated :
Intercept

Contro
Weapon

Boom

Threat : Env ironment : Weapons System : Comman d & Control : Command Authority

Figure 6- Activity Diagram with Objects

3.0 Develop Command and Control
System Use Case and DOM

At this point in our example we have
detailed the Enterprise (System-of-System) level
use cases that are germane to the Command &
Control System and are ready to begin to extract
a context diagram, use case survey and domain
object model survey for the C2 System. The
first step is to produce one or more sequence
diagrams for each of the enterprise use cases.
In the process methods will be added to a subset
of the DOM classes and some of these will
constitute the C2 System Class Survey. The
Sequence diagrams will be studied to extract a
use case survey for C2 System and the actors for
these use cases determine the C2 System context
diagram.

3.1 Sequence Diagrams
At least one sequence diagram should be

created for each use case. The number of

i
i l

l)

i ions ()

i ti ()

li ions ()

i ()

i ()

 : Com m and
Author ty

 : Ta ct ca
Picture : W eapon

Se ect Track(

Prov de Engagem ent Opt

In ate Engagm ent

Evaluate Engageabi ty Opt

As s es s Engagem ent Effect venes s

Rev ew Engagm ent Status

Create Engagem ent So

sequence diagrams per use case will increase
with the complexity of the use case scenarios.
In the sequence diagram, the modeler defines the
collaboration between the Command and
Control domain objects located in the swim lane
of the system of interest and other systems and
actors, to satisfy the activities associated with a
particular use case scenario. As the operations
are defined, they are assigned to the appropriate
domain class, proxy or actor. A careful
description of the actions performed by each
method should be written, as they are frequently
reused in multiple sequence diagrams. The
interaction with other subsystems begins to
identify the interface dependency of the C2
System. Figure 7 Shows and example of a
sequence diagram generated for the Command
and Control system based on the activity
diagram in Figure 6. In this example, the other
Systems (e.g. Weapons) are not detailed and
methods are simply added to the proxy class for
the System.

 : Weapons Sys tem

 : In te rce p t
 : Engagem ent

lution()

Sh oot W eapon()

Provide Weapon Status()

Figure 7- Sequence Diagram

3.2 C2 System Domain Object Model
Survey

As the sequence diagrams are developed
methods are added to DOM classes, which have
already been partitioned by System. Since our
emphasis is on the C2 System, most of our
DOM classes are associated with it, but every
System has at least one class, namely a proxy
class. As noted above, for all Systems except
the C2 Systems the methods are added to a
System proxy class. But for the C2 System,
methods are added to classes associated with the
C2 System. It is important to note that not
necessarily all classes will have methods.
Those classes that have methods and have been
allocated to the C2 System constitute the C2
System DOM Survey. Since each operation has
been precisely defined, these operations define
the functionality performed by the C2 system.
Figure 8 is an example of this survey.

Initi)
l)

i ()

(l

i l Pi

l)
()

l i l)

i i ()

(l l)

l ion()

(i)

Engagem ent

ate Engagment(
Contro Weapon(
Rev ew Engagment Status

f rom Ana y s is Model)

Tact ca cture

Se ect Track(
Ass ess Engagem ent

(f rom An a ys s Mo de
Weapon

Prov de Engagem ent Opt o ns

f rom An a ysis Mo de

Intercept

Create So ut

f rom Analy s s Model

Figure 8 – C2 System DOM Class Survey

3.3 C2 System Use Case Survey
The sequence diagrams not only serve as a

vehicle to define the System functionality via
their methods, but also serve as a tool for
identifying System use cases. The sequence
diagram is composed of objects associated with
the C2 System and proxy objects for the other
systems. From the perspective of the C2 system,
any proxy object used in a sequence diagram is
an external actor. Thus the sequence diagrams
show interactions between the C2 System and its
external actors. Each coherent set of
interactions becomes a use case, and the specific
sub-sequence diagram that encompasses the
interactions is used as the basis for the use case
survey description.

There will frequently be a many to many
relationship between Enterprise Level Use cases
and the use cases in the System Use Case

Survey. Figure 9 is an example of a Use Case
Survey for our C2 system.

(

i
C

Perform Engagement

Asse ss En gagment

Comm and
Author ty

f rom Business Use- . ..)

Provide Enga gemen t Options

Figure 9 – Use Case Survey

3.4 C2 System Context
After the use case and class surveys are

developed the context diagram for the C2 system
should also be developed. This is done by
reviewing the set of actors from the use case
survey and will consist of some or all of the
Enterprise Actors and some or all of the other
Enterprise Systems. Figure 10 show the context
diagram for our sample C2 system.

Crew

(f rom Crew)

Comm and Authority Weapons Sys tem
(f rom Business Use-Case Model)

(f rom Weapons)

lComm and & C ontro

Sensors
(f rom Sensors)

Figure 10 – C2 Context Diagram

4.0 Transitioning to the Next Level
At this point, the following artifacts in the

enterprise model have been developed for the C2
System:

• A C2 Context diagram
• A C2 Use case survey
• A C2 Class survey

These artifacts provide the framework for
our next level model – the C2 system model. In
fact, they serve as a specification for the C2
System. The methods on the DOM class survey
specify the functionality of the C2 System.
Depending on the project objectives, “shalls”
may even have been used to specify each
method’s functionality. The C2 Use Case
Survey specifies how the C2 System is used and
can serve as a test scenario specification. The
C2 Context Diagram specifies the external
interfaces for the System. The sub-sequence
diagrams associated with each use case in the
use case survey and the operations added to the
external actors (System Proxies) add further
detail to the external interface definition.

At this point the same process repeats with
the goal of discovering the subsystems of the C2
System. The primary distinction from what has
been discussed so far is how the new subsystems
are identified, since the Systems were assumed
to be a given in our Enterprise model. In the
work so far, we exploited our knowledge the
Systems by producing “white box” activity
diagrams, which means we had a separate swim
lane for each relevant System. This allowed us
to focus the activity diagram enhancements on
the C2 swim lane and to use System proxies for
all Systems except C2 in the sequence diagrams.
As DOM classes were identified, they were
assigned to the System (or External) package
that owned them. In the case where the
Subsystem are not known apriori, all the activity
diagrams are necessarily “black box”, which
means we will only have a swim lane labeled
“C2 System”. This swim lane is still detailed
with object flows and sequence diagrams are
produced as before. The Subsystems are defined
by looking for cohesive collections of classes
having methods and grouping them together to
form a class survey for each subsystem. The
functionality associated with those classes
through their operations specifies the
functionality provided by that subsystem. The
goal of the decomposition is to get a set of
loosely coupled subsystems with little or no
redundant functionality.

5.0 Conclusion
This paper has presented an object oriented

systems engineering approach to the problem of

System-of-System specification and
decomposition. A user centric process for
detailing the functional requirements for a
system and extracting a specification for
subsystems of the system has been presented.
The approach is model based and uses a variety
of UML diagrams including context, use case,
class, activity and sequence diagrams.

The model based, graphical nature of the
approach brings with it several benefits.
Graphical models facilitate requirements
elicitation, review and verification by the
System users, which has been referenced as a
key part of the process. A well organized model
framework facilitates the addition of new
capability or modification of existing capability.
The hierarchical and graphical nature of the
models provides an excellent means for new
project members to explore and learn the details
of the System-of-Systems. Current modeling
tools allow teams of engineers to work
collaboratively on the System-of-System models
and provide linkage between the models.

Modeling of Systems-of-Systems still
requires traditional systems engineering
activities to occur. For example, performance
models and timing budgets still need to be
developed using traditional systems engineering
tools and methods such as simulation models.
It is our view that this approach is
complimentary to these vital activities. As data
interchange standards such as AP-233 are
adopted, it is expected that the boundaries
between the techniques discussed in this paper
and other systems engineering disciplines and
tools will become less pronounced.

The diagrams used in the approach are all
consistent with the UML 1.4 standard. That
standard includes additional diagrams, such as
deployment diagrams and state diagrams, which
were not included in this paper. The UML 2.0
standard is in the works and is expected to be
released in 2004. That standard will include
extensions specifically targeted for Systems
Engineering and it is our understanding that
these extensions will only enhance the utility of
the approach discussed here.

The approach presented in this paper focuses
on the behavioral aspects of a System-of-
System. There are also non-behavior
requirements (e.g. “ilities”) that are a critical

part of the System definition. The authors are
currently exploring techniques for representing
these non-behavioral aspects of the system in
UML and for allocating them to subsystems.

References
Bahill, Terry and Daniels, Jesse, Using

Objected-Oriented and UML tools for
Hardware Design: A Case Study, Systems
Engineering (6) (2003) 28-48.

Cantor, Murray, Rational Unified Process for
Systems Engineering RUP SE1.0, A
Rational Software White Paper TP 165,
(8/01).

Friedenthal, Sanford A., Object-Oriented System
Engineering, Proceedings of the Lockheed-
Martin Systems Engineering and Software
Symposium, (July 1997).

Rob Cloutier works for Lockheed-Martin
Corporation1. He holds a B.S. from the United
States Naval Academy, and an M.B.A. from
Eastern University. He has 20 years experience
in systems engineering, software engineering,
and project management in both the commercial
and DoD industries. Rob can be reached at:
robert.j.cloutier@lmco.com.

Andrew Winkler works for Lockheed-Martin
Corporation1. He holds a B.S. and M.S. in
Physics from the University of Vermont. He has
over 8 years experience in systems, software and
manufacturing engineering. Andrew can be
reached at: andrew.j.winkler@lmco.com

John Watson works for WOW-IS and currently
is providing contract and consulting work to
Lockheed Martin1. He has over twenty years of
software and systems engineering experience in
a large spectrum of telecommunication systems
and navy command and control domains. John
can be reached at: john.watson@lmco.com

Clay Fickle works for the Lockheed-Martin1

Advanced Technology Laboratories. He has
over twenty years of software and systems
engineering experience in airborne radar,
communication satellite and navy command and
control domains. Clay can be reached at:
clay.fickle@lmco.com

1 Lockheed-Martin Corporation, NESS&SS, 199
Borton Landing Road, Moorestown, NJ 08057

mailto:robert.j.cloutier@lmco.com
mailto:andrew.j.winkler@lmco.com
mailto:john.watson@lmco.com
mailto:clay.fickle@lmco.com

	Abstract
	
	
	
	
	Figure 1 – Model Hierarchy
	Figure 2- Enterprise Context Diagram
	Figure 3- Enterprise Use Cases
	Figure 4 – Domain Object Model
	Figure 5 – Activity Diagram
	Figure 6- Activity Diagram with Objects

	3
	3.0 Develop Command and Control System Use Case and DOM
	Figure 7- Sequence Diagram

	3
	3.2 C2 System Domain Object Model Survey
	
	
	Figure 8 – C2 System DOM Class Survey

	3.3 C2 System Use Case Survey
	
	
	
	Figure 9 – Use Case Survey

	3.4 C2 System Context
	
	
	Figure 10 – C2 Context Diagram
	References

