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Abstract 

The definition of behavior in Systems 
Modeling Language (SysML) presents special 
challenges to systems engineers, as 
overlapping functionality exists among 
SysML behavioral diagrams.  This paper aims 
to guide the System Engineer (SE) through the 
challenges faced in defining a system's 
behavior via SysML by (1) identifying a set of 
purposes for behavior definition, (2) 
identifying criteria to help the SE decide 
which diagrams to use to satisfy these 
purposes, and (3) demonstrating realization of 
these purposes for a sample use case.  The 
proposed purposes are as follows: defining 
activity flow, tracking system state, defining 
system control, defining interactions, and 
allocating responsibility. 

Introduction 

The Object Management Group (OMG) 
first introduced the Unified Modeling 
Language (UML) in 1997.  UML models 
consist of diagrams which address static and 
dynamic aspects of a software design.  The 
models aid in the design and evolution of the 
software.  In 2003 Systems Modeling 
Language (SysML) Partners was formed to 
extend the OMG’s UML to address system 
engineering concerns.  SysML v. 1.0a 
specification was submitted in 2005 and 
adopted in May 2006.  As an extension to 

UML, SysML tailors UML’s basic constructs 
to facilitate use of the language for system 
modeling and for non-software system 
modeling.   

As a language specification, the SysML 
Specification intentionally avoids defining a 
process for applying the language. However, a 
SE new to UML and SysML is likely to face 
confusion during the flexible process of  
defining system behavior for the following 
reasons: (1) a complete set of purposes for 
defining system behavior have not been 
defined, and (2) overlapping functionality 
exists among the behavioral diagrams.   

This paper aims to guide the SE in fully 
defining a system's behavior, without 
compromising the flexibility of the process.  It 
does so by (1) identifying a set of purposes for 
behavior definition, (2) identifying criteria to 
help the SE decide which diagrams to use to 
satisfy these purposes, and (3) demonstrating 
realization of these purposes for a sample use 
case. 

First presented is a brief overview of the 
various SysML diagrams to show the context 
of Behavior Diagrams in SysML.  An example 
system is characterized to equip the SE to 
make good modeling decisions.  Six purposes 
of the behavioral diagrams are defined as 
follows: Narrow Problem Focus, Define 
Activity Flow, Track System State, Define 
System Control, Define Interactions, and 
Allocate Responsibility.  Achievement of each 
of purposes is addressed in the remaining 
sections. 



  

Context of Behavior Diagrams  

The structure of SysML is shown in Figure 1. 
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Figure 1.  Structure of SysML (Reference: OMG 2006) 

 
The usage of each diagram in Figure 1, 

along with its SysML abbreviation is shown in 
Table 1.  The Requirement Diagram and 
Parametric Diagrams are new diagram types 
that don't exist in UML 2.  The Activity 
Diagram, Block Definition Diagram, and 
Internal Block Diagrams have been modified 
from UML 2. 

The Requirement Diagrams define "What" 
the system should do. The Structure and 
Behavior Diagrams communicate "How" the 
system will perform the "What".  SysML 
diagrams provide for traceability of the visual 
"How" specification to the textual "What" 
specifications via relationship lines.  
Requirements Diagrams also express non-
behavioral requirements, which are most 
likely to impact the Structure Diagrams. 

Table 1.  Usage of SysML Diagrams 

Diagram Abr Usage 
Requirements Pillar 

Requirement 
Diagram req 

Defines what the 
system should do.  May 
include decomposition 
and traceability of 
requirements, and 
allocations of structure 
and tests to 
requirements. 



 

  

Structure Pillar 

Block 
Definition 
Diagram 

bdd 

Defines structure of 
elements of various 
types, often in 
hierarchical form. 
Elements maybe 
physical or logical. 

Internal 
Block 
Diagram 

ibd 
Defines the interfaces 
and item flows between 
elements. 

Parametric 
Diagram par 

Defines equations 
which constrain system 
performance and links 
internal parameters to 
these equations. 

Package 
Diagram pkg 

Provides a flexible 
method of grouping 
SysML diagrams. 

Behavior Pillar 

Use Case 
Diagram uc 

Narrows the focus of 
system modeling to a 
single scenario at-a-
time. 

Activity 
Diagram act 

Defines the flow of 
activity through the 
system. 

State 
Machine 
Diagram 

smd 

Defines transitions of 
the system or parts of 
the system through 
discrete states. 

Sequence 
Diagram sd 

Defines a flow of 
messages between 
elements. 

 
The Structure Diagrams communicate a 

framework which can execute the system's 
intended behavior.  The Structure of a system 
is defined by its parts, the interfaces between 
its parts, and the parametrics which constrain 
the system's performance.   The Behavior 
Diagrams communicate the behavior of the 
system.  Behavior Diagrams demonstrates 
how the parts of the structure works together 
to satisfy behavioral requirements. 

Characterizing System Behavior  

A wide variety of behavior exists among 
systems that can be modelled with SysML.   
Understanding these differences will assist the 
SE in choosing SysML diagrams and 
mechanisms that clearly communicate 
behavior.  As a first step, the SE should 
identify the essential behavioral characteristics 
of the system.  At a minimum, the SE should 
consider the following:  

 
• Is the system behavior continuous or 

discrete? 
 
• Will operation of the system involve 

significant human interaction? 
 
• Does the system include controllers?  

If so, are the controllers continuous or 
discrete? 

 
• Does the system involve 

concurrency? 
 
• May the system or parts of the system 

be characterized as exhibiting state 
behavior? 

 
Providing examples for all system types is 

beyond the scope of this paper.   Therefore, a 
single example is used to provide continuity 
and to demonstrate the integration of multiple 
diagrams.  This example is a typical Fuel 
Pump (FP), operating at retail Gasoline 
Stations around the world.   Using the 
considerations presented above, some key FP 
system characteristics are as follows: 

 
• The FP system is primarily a sequence 

of discrete activities such as Swiping 
Card, Selecting Fuel Grade, and 
Activating the Pump.  Fuel flow during 
pumping is continuous. 

 



  

• The FP system requires significant 
human interaction. 

 
• The FP system will require 

continuous and discrete controllers.  
Decreasing fuel flow upon nearing 
prepaid amount is assumed to utilize 
continuous control.  Computer 
activation of remote pump utilizes 
discrete control.   

 
• The FP system requires 

straightforward concurrent activities.  
The following three activities start and 
stop together: Squeezing Nozzle, Flow 
of Fuel, Metering of Fuel 

 
• The following states will exist in the 

FP system:  Idle, Authorized, Primed, 
Pumping, and Charging. 

 
 

The following section explains which 
purposes of behavioral definition are relevant, 
depending on the system's characteristics. 

Identifying the Purposes of the 
Behavioral Model 

A complete and accurate system 
behavioral model will address all of a system's 
essential behavioral characteristics.   The 
purposes of the behavioral model are 
displayed in Table 2.  Tracking System State 
and Defining System Control may be viewed 
as part of Defining Activity Flow.  They are 
shown as distinct purposes because they are 
relevant only if the system has states and/or 
controllers, and because the existence of states 
or controllers adds an extra dimension to 
activity flow definition. 

The manner in which each purpose is 
achieved will vary with the system's 
characteristics and SE preferences.  The 
remainder of the paper will suggest some 
guidelines in deciding how to utilize the 

available diagrams to accomplish these 
purposes. 

Table 2.  Purposes of Behavior Model 

 Purpose Title Purpose 
1 Narrow 

Problem Focus 
To manage complexity by 
focusing on a single 
scenario at-a-time. 

2 Define Activity 
Flow 

To define what activities are 
performed by the system in 
what order. 

*2 Track System 
State 

To track the state of the 
system. 

*2 Define System 
Control 

To define how a system is 
controlled. 

3 Define 
Interactions 

To define the flow of items 
between parts of the system. 

4 Allocate 
Responsibility 

To define the parts of the 
structure responsible for 
performing each activity 
and interaction. 

Notes: 
* These purposes maybe viewed as part of Defining 
Activity Flow, but are only relevant if the system has 
states and/or controllers. 

Narrowing Problem Focus 

Narrowing problem focus is first 
accomplished using Use Case Diagrams.  A 
Use Case (uc) is a "focused" scenario through 
which the system's behavior may be modeled. 
The Use Case Diagram begins the process of 
activity decomposition at a high level.  A 
sample Use Case Diagram for a typical 
Gasoline Station Fuel Pump is shown in 
Figure 2.  A SE is only required to include 
Use Cases relevant to their immediate purpose 
(Booch, 1999). In Figure 2, several Use Cases 
that would normally exist for a Fuel Pump, 
such as "Regulatory Inspection", have been 
purposely omitted.   Similarly, only Actors 
relevant to the Use Cases being addressed are 
included in the uc diagram. 

The system of interest, 'Fuel Pump', is 
enclosed by the subject box.  The entities 
which interact with the system are outside this 
box, connected to each uc in which they 



 

  

participate by a solid line.  The primary 'Get 
Fuel' uc is extended by three modular Use 
Cases using the <<include>> extension.  
These are 'Obtain Authorization', 'Pump Fuel', 

and 'Pay for Fuel'.   At this point we have 
provided a context for defining activity flow 
for the 'Get Fuel' uc. 

 
 

Fuel Pump - Use Case diagram package 'Behavior Package' {1/1}

'Gas Pump' 

'Get Fuel'
 

Maintain
 

Operator
 

Clerk
 

Maintainer
 

Financial Institution
 

'Obtain Authorization'
 

'Pump Fuel'
 

'Pay for Fuel'
 

'Initialize Pump'
 

<<include>><<include>>

<<include>><<include>>

<<include>><<include>>

<<extend>><<extend>>

 
Figure 2.  Fuel Pump Use Case Diagram 

 

Starting Activity Flow Definition 

Activity Diagrams, State Machine 
Diagrams, and Sequence Diagrams may all be 
used to define activity flow.  The strengths 
and weaknesses of these diagrams for defining 
activity flow are shown in Table 3.   As true in 
"Yin-Yang" theory, each of a diagram's 
strengths may cause weakness in other areas.   
This is why multiple diagrams are more 
powerful than one. 
 We'll now begin to define activity flow 
for the 'Get Fuel' uc of the 'Fuel Pump' system, 

making use of Table 3.  We first aim to define 
a high level activity flow.   The ad appears to 
be the best choice for this, as it provides a 
simplified depiction of intended flow, with 
auto-triggering of control upon completion of 
each activity.  It also provides explicit visual 
depiction of complex flow, if needed.  We 
avoid the state machine diagram, which may 
be ambiguous in demonstrating the desired 
sequence of flow.   



  

Table 3.  Strengths (S)and Weaknesses (W) 
of Diagrams for Defining Activity Flow 

Activity Diagrams 

S 

• Visually explicit depiction of 
complex flow. 

• Simplified depiction of intended 
flow, with auto-triggering of control 
upon completion of immediate 
activity (no event or message 
required) 

• Mechanism for a control operator 
available in SysML 

W 
o Generally shows only one of 

multiple possible sequences of state 
transitions at-a-time. 

State Machine Diagrams 

S 

• Visually explicit depiction of 
complex flow. 

• Clear indication of all possible 
transitions from each state of the 
system, subsystem, or element. 

• Exhibits same strengths in eliciting 
behavior of a controller. 

W 
o Standing alone, the desirable 

sequence of state transitions may be 
ambiguous. 

Sequence Diagrams 
S • Clear depiction of sequential flow. 

W 

o Less visually explicit depiction of 
complex flow. 

o Awkward for defining high level 
flow, as it requires allocation of 
activity to element 

 
 
A high-level ad for the 'Get Fuel' uc is 

shown in Figure 3.  The three <<include>> 
uc's from the Use Case Diagram in Figure 2 
map to activities in this high-level diagram.   
The 'Select Fuel Grade' activity has not been 
designated a uc due to its simplicity. 

There are different ways of viewing ad's.  
Establishing an ad viewpoint can assist the SE 
in effective use of the ad in a particular 
context.   If an ad models a workflow, it 

maybe viewed as a simplified version of a 
statement machine diagram, in which each 
activity represents a different state, and the 
transition from one state to the next is 
triggered by completion of the immediate 
activity (Bennet 2001).  If an ad models an 
operation, it may be viewed as a flowchart of 
the operation's actions. 

 

Get Fuel activity 'Get 
Fuel ad'

{1/1}

Obtain Authorization

  

Select Fuel Grade

  

Pay for Fuel

Pump Fuel

  

  

Paid Upf ront?

  

 Yes

 

 Yes
 No

 

 No

  

 
Figure 3. Get Fuel Activity Diagram 

If an ad models the flow of activity through a 
series of states, it maybe viewed as the 
"inverse" of a smd, in which the ad 
emphasizes transitions between states, while 
the smd emphasizes states.  In reality, the ad 
may elicit behavior within a state as well as 
behavior between states. 



 

  

 Upon examination of the Fuel Pump's 
characteristics and the ad, it appears most 
relevant to view this diagram as the inverse of 
a smd, which emphasizes the flow through a 
series of states.   Recall that the Fuel Pump's 
behavior consists primarily of a sequence of 
discrete activities and exhibits discrete states.   
With this in mind, the next three sections will 
continue activity flow definition.  Tracking 
System State will demonstrate a smd 
consistent with the ad above.  Defining 
System Control will define control activity for 
the continuous controller part of the system.  
Finally, the sequence diagrams in Define 

Interactions will define activity flow between 
parts of the system. 

Tracking System State 

Tracking System State is important for all 
systems with states.   If the SE is not aware of 
the current system state, the flow of activity is 
uncertain.   States are best tracked through 
State Machine Diagrams (smd's).   A smd may 
be drawn for the system being modeled or for 
any element in the system which exhibits 
various states. Figure 4 displays a smd for the 
Fuel Pump in the context of the 'Get Fuel' uc. 

 

Fuel Pump smd statemachine 'Behavior Package' ::
 'Fuel Pump smd'

{1/1}
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& Timeout
Account Charged
& Timeout

 
Figure 4.  Fuel Pump State Machine Diagram 

Figure 4 displays the following five states: 
Idle, Authorized, Primed, Pumping, and 
Charging.  We arrived at these states by 

walking through a typical 'Get Fuel' uc 
scenario, and identifying discrete stages in 
which the Fuel Pump is expected to behave 



  

differently from other stages.  All of the 
possible transitions between states are shown 
and labeled.  We arrived at the various 
transitions by considering all the possible 
operator, clerk, or internal events which may 
trigger a transition from each state.   

The smd could potentially be used to 
independently elicit the flow of activity for a 
uc by showing only those transitions exercised 
for one instance of the use case.  However, 
this would forfeit the power of the smd to 
clearly communicate a series of related 
information within the same visual space.   
Moreover, independent elicitation using a smd 
may contain ambiguities if the same state in 
the smd is reached more than once for a 
particular uc instance.  By combining the 
natural ability of the ad or sd to show an 
intended flow with the smd's ability to depict 
potential transitions, an overall picture of 
activity flow has been obtained in an efficient 
manner.   

Though Figure 3 and Figure 4 define the 
intended flow and all the possible flows at the 
system level, they don't dictate which flow 
variations will be realized for a particular uc 
instance.  These flow variations depend on the 
actor's behavior at each point in the uc.  This 
will be demonstrated using sequence diagrams 
in the "Defining Interactions" section. 

Defining System Control 

Activity flow definition would not be 
complete without addressing the activities 
performed by internal controllers.   For the 
Fuel Pump, the discrete aspects of control 
(such as sending an activation signal to the 
remote fuel tank pump), are easily addressed 
as part of the lower-level sequence diagrams 
to follow.  The continuous aspect of control, 
in which a metering valve is progressively 
closed upon nearing a prepaid amount, may be 
addressed by elaborating the "Pump" state 
with an activity diagram.  Figure 5 shows an 
activity diagram for the "Pump" state. 
 

 
Pump act activity   'Pump act' {1/1}

  
  
  

Enable  Metering 
<<controlOperator>> 

{stream } 
 

{stream } 

 

 
 
 

Meter Flow

Yes
 

Yes

<<continuous >>
Valve Position

{stream }
 

{stream } Valve 
Position 
=   0 

No 
 

No 

 
  
  
  

Pumping
<< continuous>> 

 
 

 
 
 

Valve Closed
 

Valve Closed

 
 
 

Release Handle 

Figure 5.  Pump Activity Diagram 
 

The dashed line in Figure 5 represents an 
interruptable region; releasing the Fuel Nozzle 
causes immediate exit of the Pump state.  
SysML's rate stereotype is applied to indicate 
Pumping as a <<continuous>> activity.   
SysML's <<controlOperator>> stereotype is 
applied to the Enable Metering Activity, 
which determines whether or not metering of 
the flow is required.  The 
<<controlOperator>> is continuous per 
SysML convention (OMG 2006).  If metering 
is required, the Meter Flow activity calculates 
the appropriate Valve Position; otherwise 
Valve Position is set to 0, or wide open.  The 



 

  

Valve Position object is fed to the Pumping 
activity.  If the Valve closes completely, the 
Pre-paid amount has been reached, causing a 
transition out of the Pump state. 
 Figure 6 reveals the details of the 
<<controlOperator>> Enable Metering.  If the 
Prepaid Amount minus the Dollars Pumped is 
less than $1.00, the Control Value is set to 
enable; otherwise, it is disable.  This causes 
the flow to be metered only when nearing the 
Prepaid Amount. 
 
 

<<controlOperator>> 
act Enable Metering 

Prepaid   Amount Dollars   Pumped

Prepaid   Amount   - 
Dollars   Pumped   < 

$ 1.00 ? 

  
  
  

   { stream }
  

   { stream }

enable 
<< ValueSpecAction >> << ValueSpecAction >>

disable

Yes 
  

Yes No
 

No

    
  
  

  
  
  

Control   Value 
  
  
  

Figure 6.  Enable Metering Activity 
Diagram 

Figure 7 reveals the details of how the 
commanded Valve Position is calculated.  The 
Flow Meter signal has been used to tally the 
Dollars Pumped.  Valve Position = 1 - 
(Prepaid Amount - Dollars Pumped).  This 
formula reveals that the Valve closes in a 

continuous linear fashion as remaining Dollars 
to be pumped falls from $1.00 to $0.00. 
 
 

act Meter Flow

Prepaid Amount

Flow   Meter 

Dollars   Pumped

Calculate Valve   Position :    
1 - (PrepaidAmount   -   Dollars   Pumped )

 
 
 

  
  
  

  
  
  

Valve   Position 

  { stream } 
  

  { stream } 

 
Figure 7. Meter Flow Activity Diagram 

Defining Interactions 

At this point, we have demonstrated high 
level activity flow definition, including 
tracking a system's state, and defining system 
control.  For the high level activity flow 
already demonstrated, it remains to define the 
interactions between the actors and the 
system.  It also remains to demonstrate 
interactions between parts of the system 
(Overgaard, 1999).  Table 4 show the 
strengths and weaknesses of sequence and 
activity diagrams for defining interactions.  
Figure 8 shows a sequence diagram. 



  

Table 4.  Strengths (S) and Weaknesses (S) 
of Behavior Diagrams for Defining 

Interactions 

Sequence Diagrams 

S 

• Cleanly defines sequence of 
interactions as time marches 
vertically down the page. 

• Cleanly defines messages or 
operations along horizontal lines. 

• Allows for depiction of actions 
performed in-between interactions. 

• Allows for depiction of element 
states in-between interactions. 

W o Eliciting continuous interaction is 
awkward. 

Activity Diagrams 

S 

• Shows interactions in the context 
of activities being performed. 

• Continuous interaction maybe 
demonstrated using {stream} 
stereotype. 

W 

o Requires usage of swimlanes to 
identify source & recipient 
elements, which can make spatial 
arrangement of complex flow 
awkward. 

o Requires use of additional object 
blocks and lines to show item 
flow, which can clutter a diagram. 

 
Both sequence and activity diagrams can 

serve to define interaction as well as activity 
flow, but the sd defines interactions more 
naturally.  Sequence Diagrams cleanly define 
a sequence of interactions as time marches 
vertically down the page.  They also cleanly 
define messages or operations along 
horizontal lines.   On the other hand, activity 
diagrams require Swimlanes (to allocate 
behavior) and Data Flow Objects (to show 
messages or operation calls) to define 
interactions (Long, 1995).  Swimlanes in ad's 
interfere with the ability to cleanly split a flow 
for alternate or concurrent activity.  If each of 
the split flow paths include activities 

performed by the same elements, spatial 
arrangement becomes awkward.  Activity 
diagram Data Flow Objects may also clutter a 
diagram.  
 For these reasons, sd's have been 
chosen to define interactions for our example 
case.  The sd's weakness in eliciting complex 
flow is a non-factor in this case, since the Fuel 
Pump state transitions involve non-complex 
sequences of activities.  Figure 8 elicits the 
activity flow and interactions for each of the 
possible transitions between the Idle State and 
the Authorized State of the Fuel Pump system.  
The appearance of the <<subject>> system 
'Fuel Pump' and actors as lifeline blocks 
indicates this sd elicits external interactions. 
 The "alt" construct is used to 
differentiate between the 'Clerk Activated' 
transition, and the 'Credit/Debit Card' 
transition.  The similarity of the 'Credit Card' 
and 'Debit Card' transitions in the smd allow 
them to be addressed together here.  The "alt" 
construct is also used to differentiate a 
successful versus unsuccessful Card 
Authorization, and two different Clerk 
Activation alternatives.   

State Symbols are used on the sd to 
show the connection to the smd.  As all the 
alternatives begin in the Idle State, the "Idle" 
state symbol is shown as the first state on the 
'Gas Pump' lifeline.  At each point in the flow 
where a change of state occurs, the new state 
is indicated on the lifeline.  A successful 
instance of the 'Obtain Authorization' uc 
results in the 'Authorized' State. 

The 'Credit/Debit Card' alternative 
begins with the 'Fuel Pump' in the Idle state 
sending a message to the Operator to swipe 
their credit or debit card.  The operator 
transfers their card information to the FP by 
swiping the card, and the FP forwards the 
information to a Financial Institution.  
Depending on the status of the card account, 
the Financial institution returns an "approved" 
or "disapproved" message to the Pump.  If 
"approved", the FP requests the Operator to 



 

  

select a fuel grade and transitions the Pump to 
the 'Authorized' state; if "disapproved" the 
Pump sends a message to the Operator 
indicating an invalid account.  If the card was 
"approved", the FP must store how 
authorization occurred in "memory", to 
properly control behavior later in the flow. 

In the same manner, sd's may be created for 
the remainder of the transitions, completing 
the definition of flow activity and 
corresponding interactions at the system level 
for the 'Get Fuel' uc. 

 

sd Get Fuel /Authorization sd interaction 'Get Fuel / 
Authorization sd'

{1/1}

Finance Inst
 

Clerk
<<actor>>

Fuel Pump
<<subject>>

Operator
<<actor>>

alt Prepay

alt Approved

alt Credit/Debit Card

Authorized

Idle

Authorized

Idle

alt Clerk Activatedalt Clerk Activated

Sw ipe CardSw ipe Card

 'Please sw ipe Credit or Debit Card'() 'Please sw ipe Credit or Debit Card'()

Credit Card InformationCredit Card Information

DisapprovedDisapproved

Approved()Approved()

Please select fuel gradePlease select fuel grade

Disapproved()Disapproved()

Sorry, Inactive AccountSorry, Inactive Account

Please activate my PumpPlease activate my Pump
Activate()Activate()

Please  select  fuel gradePlease  select  fuel grade

«»<Memory>
Car Authorized

«»<<Memory>>
Clerk Authorize

alt Trust Activatedalt Trust Activated

Payment()Payment()
Prepaid AmtPrepaid Amt

«»<<Memory>> Prepaid Amt

 
Figure 8.  Authorization Sequence Diagram 



  

 

Allocating Responsibility 

Now that system level behavior has been 
defined, the next step is to formulate a 
structure for the system.   The sequence 
diagrams provide a guide for modeling the 
structure.  To start, we know that the system 
needs a component which is able to handle 
each interaction between itself and an actor 
(Friedenthal, 2006).  Furthermore, the system 
needs the capacity to transform each 
interaction input into the proper output, 
whether it is an internal output to another part 

of the system, or an external output to another 
actor.   

 Defining structure is outside the scope 
of this paper.  However, a few parts will be 
defined to allow for demonstration of internal 
interactions and allocation.  These parts 
include a Computer Motherboard (with a 
built-in Network Card and other I/O ports), a 
Transaction Display, and a Card Reader.   
These are the only Fuel Pump parts necessary 
to define the internal interactions for the 
Authorization activities for the given level. 

 
 
 

sd Internal / Card Authorization sd interaction 'Internal / Card 
Authorization sd'

{1/1}

Motherboard
 

Card Reader
 

Transaction Display
 

alt Approved

Please sw ipe MsgPlease sw ipe Msg

Please sw ipe MsgPlease sw ipe Msg Sw ipe Card MagneticSw ipe Card Magnetic

Sw ipe Card BinarySw ipe Card Binary

Convert Magnetic to Binary

Encrypted Card InfoEncrypted Card Info

Encrypt Card Info

alt Disapprovedalt Disapproved

Approved()Approved()

Please select fuel gradePlease select fuel grade
Please select fuel gradePlease select fuel grade

Disapproved()Disapproved()
Sorry, Inactive AccountSorry, Inactive Account

Sorry, Inactive AccountSorry, Inactive Account

Generate Idle Msg

Display Msg on LCD

Process Receipt

 
Figure 9. Card Authorization Sequence Diagram 



 

  

 
The same diagrams used to define 

external interactions are used to define 
internal interactions.  Figure 9 displays an 
"internal" sequence diagram which conforms 
to the external Authorization sd.  This sd is 
simply a decomposition of the 'Fuel Pump' sd 
in Figure 8.  The messages coming in-and-out 
of the Pump from Figure 8 should match the 
messages coming in-and-out of Figure 9. 

Allocations are implicitly performed as 
part of the process of defining internal 

interactions.  Notice that "Action Blocks" such 
as 'Generate Idle Message' and 'Convert 
Magnetic to Binary' have been included on 
some of the lifelines.  Those actions which 
don't map directly to system functional 
requirements would be classified as Derived 
Requirements, as they are lower-level 
functions required for the system to 
accomplish its system-level behavior. 

 
 

req Card Authorization packag'Requirements {1/1}

<< requirement>> 
CardAuthorization 

«» Text = "The fuel pump shall        
allow self-service operations  
through the use of a credit or    
debit  card. 

<<requirement >> 
Environment 

«»Text= "The fuel pump shall  
operate from -20 to 110  
degrees Fahre nheit." 

<< requirement ,>> 
MagneticReader 

«» Text = "The fuel pump shall   
contain a device which reads       
a standard magnetic card      
when the card is inserted and  
removed swif tly." 
  

<<requirement>>

DigitalConverter

«»Text= "The CardReader      
shall convert the      
magnetic pulses to       
digital ones and  zeros".

<< block >> 
Magnetic   Reader 

<<block>>

Digital Converter_

<<block>>

CardReader

<<satisfy>><<satisfy>>

<<requirement>>

<<refine>> 

CardReaderInterface

<<interfaceRqmt>>

'Text="The CardReader     
shall interface to the 
Motherboard."

<< deriveReqt>><< deriveReqt>> <<deriveReqt>><<deriveReqt>>

<< satisfy >><< satisfy >> <<satisfy >><<satisfy >>

Obtain 
Authorization 

 
Figure 10.  Card Authorization Requirements Diagram 

 
Along with allocation of actions to 

structure, interactions must be allocated to 
structure.  Interactions are allocated to 

interfaces, until each message or flow between 
components is realized by an interface 
specification.  By tracing through a complete 



  

set of interaction diagrams, and ensuring that 
each flow input and output is allocated to an 
interface, the SE is assured to capture all the 
interfaces.   

 Figure 10 shows a Requirements 
Diagram which demonstrates the allocation of 
actions and interactions to structural elements 
using the <<satisfy>> construct.  Also shown 
is traceability of derived requirements to 
system requirements.  The "Obtain 
Authorization" uc has been used to 
<<refine>> the Card Authorization 
requirement.  Modeling of the uc resulted in 
the MagneticReader <<derived>> 
requirement, and a CardReader <<block>> 
which <<satisfies>> this derived requirement.   
Generation of the Card Reader and 
Motherboard components led to the creation 
of the CardReaderInterface  
<<interfaceSpecification>>.   This led to the  
DigitalConverter derived requirement, and a 
DigitalConverter component of the Card 
Reader to satisfy the new requirement.  The 
Card Reader block is also shown as needing to 
satisfy a system-wide environmental 
requirement. 

Conclusions 

Behavioral Diagrams are a key Pillar of 
the SysML language.  Utilizing common 
visual constructs, they provide a means of 
visualizing behavior from an actor's 
perspective down through a detailed design 
perspective.  They lay the framework for 
defining the structure of the system which can 
execute the intended behavior.  Due to the 
wide variety of systems which may be 
addressed using SysML, no fixed 
methodology of applying behavioral diagrams 
is likely to work for all systems.  An 
understanding of the strengths and weakness 
of each diagrams should guide the SE in 
achieving the purposes of the Behavioral 
Pillar. 

 The Use Case Diagram is primarily 
useful in managing complexity by focusing 

the SE on one scenario at-a-time.  Activity 
flow definition may be accomplished through 
various combinations of act's, smd's, and sd's.  
Act's and smd's are better than sd's for 
defining complex flows.  For systems with 
states, smd's play a vital role.  Ad's are 
preferred for defining continuous control 
activity.  Sd's are preferred for defining 
interactions with actors and internal 
components.  Sd's cleanly allocate behavior to 
structural parts and identify messages flow, 
setting the stage for structural block diagrams, 
internal block diagrams, and interface 
specifications. 
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