

Paper 108

The Use of Behavioral Diagrams in SysML
CSER 2007

Larry Zdanis
1526 Oxford Road, Wantagh, NY 11793

Robert Cloutier, Ph.D.
Stevens Institute of Technology

larryzdanis@yahoo.com Robert.cloutier@stevens.edu

Abstract

The definition of behavior in Systems
Modeling Language (SysML) presents special
challenges to systems engineers, as
overlapping functionality exists among
SysML behavioral diagrams. This paper aims
to guide the System Engineer (SE) through the
challenges faced in defining a system's
behavior via SysML by (1) identifying a set of
purposes for behavior definition, (2)
identifying criteria to help the SE decide
which diagrams to use to satisfy these
purposes, and (3) demonstrating realization of
these purposes for a sample use case. The
proposed purposes are as follows: defining
activity flow, tracking system state, defining
system control, defining interactions, and
allocating responsibility.

Introduction

The Object Management Group (OMG)
first introduced the Unified Modeling
Language (UML) in 1997. UML models
consist of diagrams which address static and
dynamic aspects of a software design. The
models aid in the design and evolution of the
software. In 2003 Systems Modeling
Language (SysML) Partners was formed to
extend the OMG’s UML to address system
engineering concerns. SysML v. 1.0a
specification was submitted in 2005 and
adopted in May 2006. As an extension to

UML, SysML tailors UML’s basic constructs
to facilitate use of the language for system
modeling and for non-software system
modeling.

As a language specification, the SysML
Specification intentionally avoids defining a
process for applying the language. However, a
SE new to UML and SysML is likely to face
confusion during the flexible process of
defining system behavior for the following
reasons: (1) a complete set of purposes for
defining system behavior have not been
defined, and (2) overlapping functionality
exists among the behavioral diagrams.

This paper aims to guide the SE in fully
defining a system's behavior, without
compromising the flexibility of the process. It
does so by (1) identifying a set of purposes for
behavior definition, (2) identifying criteria to
help the SE decide which diagrams to use to
satisfy these purposes, and (3) demonstrating
realization of these purposes for a sample use
case.

First presented is a brief overview of the
various SysML diagrams to show the context
of Behavior Diagrams in SysML. An example
system is characterized to equip the SE to
make good modeling decisions. Six purposes
of the behavioral diagrams are defined as
follows: Narrow Problem Focus, Define
Activity Flow, Track System State, Define
System Control, Define Interactions, and
Allocate Responsibility. Achievement of each
of purposes is addressed in the remaining
sections.

Context of Behavior Diagrams

The structure of SysML is shown in Figure 1.

SysML
Diagram

Structure
Diagram

Requirement
Diagram

Behavior
Diagram

Block
Definition
Diagram

Internal
Block
Diagram

Package
Diagram

Parametric
Diagram

Activity
Diagram

Sequence
Diagram

State
Machine
Diagram

Use
Case
Diagram

Legend
New Diagram
Type

Modified from
UML 2

Same as
UML 2

Figure 1. Structure of SysML (Reference: OMG 2006)

The usage of each diagram in Figure 1,

along with its SysML abbreviation is shown in
Table 1. The Requirement Diagram and
Parametric Diagrams are new diagram types
that don't exist in UML 2. The Activity
Diagram, Block Definition Diagram, and
Internal Block Diagrams have been modified
from UML 2.

The Requirement Diagrams define "What"
the system should do. The Structure and
Behavior Diagrams communicate "How" the
system will perform the "What". SysML
diagrams provide for traceability of the visual
"How" specification to the textual "What"
specifications via relationship lines.
Requirements Diagrams also express non-
behavioral requirements, which are most
likely to impact the Structure Diagrams.

Table 1. Usage of SysML Diagrams

Diagram Abr Usage
Requirements Pillar

Requirement
Diagram req

Defines what the
system should do. May
include decomposition
and traceability of
requirements, and
allocations of structure
and tests to
requirements.

Structure Pillar

Block
Definition
Diagram

bdd

Defines structure of
elements of various
types, often in
hierarchical form.
Elements maybe
physical or logical.

Internal
Block
Diagram

ibd
Defines the interfaces
and item flows between
elements.

Parametric
Diagram par

Defines equations
which constrain system
performance and links
internal parameters to
these equations.

Package
Diagram pkg

Provides a flexible
method of grouping
SysML diagrams.

Behavior Pillar

Use Case
Diagram uc

Narrows the focus of
system modeling to a
single scenario at-a-
time.

Activity
Diagram act

Defines the flow of
activity through the
system.

State
Machine
Diagram

smd

Defines transitions of
the system or parts of
the system through
discrete states.

Sequence
Diagram sd

Defines a flow of
messages between
elements.

The Structure Diagrams communicate a

framework which can execute the system's
intended behavior. The Structure of a system
is defined by its parts, the interfaces between
its parts, and the parametrics which constrain
the system's performance. The Behavior
Diagrams communicate the behavior of the
system. Behavior Diagrams demonstrates
how the parts of the structure works together
to satisfy behavioral requirements.

Characterizing System Behavior

A wide variety of behavior exists among
systems that can be modelled with SysML.
Understanding these differences will assist the
SE in choosing SysML diagrams and
mechanisms that clearly communicate
behavior. As a first step, the SE should
identify the essential behavioral characteristics
of the system. At a minimum, the SE should
consider the following:

• Is the system behavior continuous or

discrete?

• Will operation of the system involve

significant human interaction?

• Does the system include controllers?

If so, are the controllers continuous or
discrete?

• Does the system involve

concurrency?

• May the system or parts of the system

be characterized as exhibiting state
behavior?

Providing examples for all system types is

beyond the scope of this paper. Therefore, a
single example is used to provide continuity
and to demonstrate the integration of multiple
diagrams. This example is a typical Fuel
Pump (FP), operating at retail Gasoline
Stations around the world. Using the
considerations presented above, some key FP
system characteristics are as follows:

• The FP system is primarily a sequence

of discrete activities such as Swiping
Card, Selecting Fuel Grade, and
Activating the Pump. Fuel flow during
pumping is continuous.

• The FP system requires significant
human interaction.

• The FP system will require

continuous and discrete controllers.
Decreasing fuel flow upon nearing
prepaid amount is assumed to utilize
continuous control. Computer
activation of remote pump utilizes
discrete control.

• The FP system requires

straightforward concurrent activities.
The following three activities start and
stop together: Squeezing Nozzle, Flow
of Fuel, Metering of Fuel

• The following states will exist in the

FP system: Idle, Authorized, Primed,
Pumping, and Charging.

The following section explains which
purposes of behavioral definition are relevant,
depending on the system's characteristics.

Identifying the Purposes of the
Behavioral Model

A complete and accurate system
behavioral model will address all of a system's
essential behavioral characteristics. The
purposes of the behavioral model are
displayed in Table 2. Tracking System State
and Defining System Control may be viewed
as part of Defining Activity Flow. They are
shown as distinct purposes because they are
relevant only if the system has states and/or
controllers, and because the existence of states
or controllers adds an extra dimension to
activity flow definition.

The manner in which each purpose is
achieved will vary with the system's
characteristics and SE preferences. The
remainder of the paper will suggest some
guidelines in deciding how to utilize the

available diagrams to accomplish these
purposes.

Table 2. Purposes of Behavior Model

 Purpose Title Purpose
1 Narrow

Problem Focus
To manage complexity by
focusing on a single
scenario at-a-time.

2 Define Activity
Flow

To define what activities are
performed by the system in
what order.

*2 Track System
State

To track the state of the
system.

*2 Define System
Control

To define how a system is
controlled.

3 Define
Interactions

To define the flow of items
between parts of the system.

4 Allocate
Responsibility

To define the parts of the
structure responsible for
performing each activity
and interaction.

Notes:
* These purposes maybe viewed as part of Defining
Activity Flow, but are only relevant if the system has
states and/or controllers.

Narrowing Problem Focus

Narrowing problem focus is first
accomplished using Use Case Diagrams. A
Use Case (uc) is a "focused" scenario through
which the system's behavior may be modeled.
The Use Case Diagram begins the process of
activity decomposition at a high level. A
sample Use Case Diagram for a typical
Gasoline Station Fuel Pump is shown in
Figure 2. A SE is only required to include
Use Cases relevant to their immediate purpose
(Booch, 1999). In Figure 2, several Use Cases
that would normally exist for a Fuel Pump,
such as "Regulatory Inspection", have been
purposely omitted. Similarly, only Actors
relevant to the Use Cases being addressed are
included in the uc diagram.

The system of interest, 'Fuel Pump', is
enclosed by the subject box. The entities
which interact with the system are outside this
box, connected to each uc in which they

participate by a solid line. The primary 'Get
Fuel' uc is extended by three modular Use
Cases using the <<include>> extension.
These are 'Obtain Authorization', 'Pump Fuel',

and 'Pay for Fuel'. At this point we have
provided a context for defining activity flow
for the 'Get Fuel' uc.

Fuel Pump - Use Case diagram package 'Behavior Package' {1/1}

'Gas Pump'

'Get Fuel'

Maintain

Operator

Clerk

Maintainer

Financial Institution

'Obtain Authorization'

'Pump Fuel'

'Pay for Fuel'

'Initialize Pump'

<<include>><<include>>

<<include>><<include>>

<<include>><<include>>

<<extend>><<extend>>

Figure 2. Fuel Pump Use Case Diagram

Starting Activity Flow Definition

Activity Diagrams, State Machine
Diagrams, and Sequence Diagrams may all be
used to define activity flow. The strengths
and weaknesses of these diagrams for defining
activity flow are shown in Table 3. As true in
"Yin-Yang" theory, each of a diagram's
strengths may cause weakness in other areas.
This is why multiple diagrams are more
powerful than one.
 We'll now begin to define activity flow
for the 'Get Fuel' uc of the 'Fuel Pump' system,

making use of Table 3. We first aim to define
a high level activity flow. The ad appears to
be the best choice for this, as it provides a
simplified depiction of intended flow, with
auto-triggering of control upon completion of
each activity. It also provides explicit visual
depiction of complex flow, if needed. We
avoid the state machine diagram, which may
be ambiguous in demonstrating the desired
sequence of flow.

Table 3. Strengths (S)and Weaknesses (W)
of Diagrams for Defining Activity Flow

Activity Diagrams

S

• Visually explicit depiction of
complex flow.

• Simplified depiction of intended
flow, with auto-triggering of control
upon completion of immediate
activity (no event or message
required)

• Mechanism for a control operator
available in SysML

W
o Generally shows only one of

multiple possible sequences of state
transitions at-a-time.

State Machine Diagrams

S

• Visually explicit depiction of
complex flow.

• Clear indication of all possible
transitions from each state of the
system, subsystem, or element.

• Exhibits same strengths in eliciting
behavior of a controller.

W
o Standing alone, the desirable

sequence of state transitions may be
ambiguous.

Sequence Diagrams
S • Clear depiction of sequential flow.

W

o Less visually explicit depiction of
complex flow.

o Awkward for defining high level
flow, as it requires allocation of
activity to element

A high-level ad for the 'Get Fuel' uc is

shown in Figure 3. The three <<include>>
uc's from the Use Case Diagram in Figure 2
map to activities in this high-level diagram.
The 'Select Fuel Grade' activity has not been
designated a uc due to its simplicity.

There are different ways of viewing ad's.
Establishing an ad viewpoint can assist the SE
in effective use of the ad in a particular
context. If an ad models a workflow, it

maybe viewed as a simplified version of a
statement machine diagram, in which each
activity represents a different state, and the
transition from one state to the next is
triggered by completion of the immediate
activity (Bennet 2001). If an ad models an
operation, it may be viewed as a flowchart of
the operation's actions.

Get Fuel activity 'Get
Fuel ad'

{1/1}

Obtain Authorization

Select Fuel Grade

Pay for Fuel

Pump Fuel

Paid Upf ront?

 Yes

 Yes
 No

 No

Figure 3. Get Fuel Activity Diagram

If an ad models the flow of activity through a
series of states, it maybe viewed as the
"inverse" of a smd, in which the ad
emphasizes transitions between states, while
the smd emphasizes states. In reality, the ad
may elicit behavior within a state as well as
behavior between states.

 Upon examination of the Fuel Pump's
characteristics and the ad, it appears most
relevant to view this diagram as the inverse of
a smd, which emphasizes the flow through a
series of states. Recall that the Fuel Pump's
behavior consists primarily of a sequence of
discrete activities and exhibits discrete states.
With this in mind, the next three sections will
continue activity flow definition. Tracking
System State will demonstrate a smd
consistent with the ad above. Defining
System Control will define control activity for
the continuous controller part of the system.
Finally, the sequence diagrams in Define

Interactions will define activity flow between
parts of the system.

Tracking System State

Tracking System State is important for all
systems with states. If the SE is not aware of
the current system state, the flow of activity is
uncertain. States are best tracked through
State Machine Diagrams (smd's). A smd may
be drawn for the system being modeled or for
any element in the system which exhibits
various states. Figure 4 displays a smd for the
Fuel Pump in the context of the 'Get Fuel' uc.

Fuel Pump smd statemachine 'Behavior Package' ::
 'Fuel Pump smd'

{1/1}

Idle

Authorized
(No Pressure)

Primed
(Pressure)

Pumping,
(Flow)

Charging State
(No Pressure)

Credit Card ApprovedCredit Card Approved

Debit Card ApprovedDebit Card Approved

Clerk ActivatedClerk Activated

Valid Fuel Selection
and Pump Primed
Valid Fuel Selection
and Pump Primed

Timeout -
Inaction-1
Timeout -
Inaction-1

Timeout-
Inaction-2
Timeout-
Inaction-2

Cancel Prior
 to Pump
Cancel Prior
 to Pump

Squeeze
Nozzle
Squeeze
Nozzle

Release
Nozzle
Release
Nozzle

Timeout -
Clerk Activation
Timeout -
Clerk Activation

Credit or Debit Auth - TimeoutCredit or Debit Auth - Timeout

Credit or Debit Auth - Receipt ResponseCredit or Debit Auth - Receipt Response

Prepaid Amt
Reached
Prepaid Amt
Reached

Account Charged &
Receipt Response
Account Charged &
Receipt Response

Account Charged
& Timeout
Account Charged
& Timeout

Figure 4. Fuel Pump State Machine Diagram

Figure 4 displays the following five states:
Idle, Authorized, Primed, Pumping, and
Charging. We arrived at these states by

walking through a typical 'Get Fuel' uc
scenario, and identifying discrete stages in
which the Fuel Pump is expected to behave

differently from other stages. All of the
possible transitions between states are shown
and labeled. We arrived at the various
transitions by considering all the possible
operator, clerk, or internal events which may
trigger a transition from each state.

The smd could potentially be used to
independently elicit the flow of activity for a
uc by showing only those transitions exercised
for one instance of the use case. However,
this would forfeit the power of the smd to
clearly communicate a series of related
information within the same visual space.
Moreover, independent elicitation using a smd
may contain ambiguities if the same state in
the smd is reached more than once for a
particular uc instance. By combining the
natural ability of the ad or sd to show an
intended flow with the smd's ability to depict
potential transitions, an overall picture of
activity flow has been obtained in an efficient
manner.

Though Figure 3 and Figure 4 define the
intended flow and all the possible flows at the
system level, they don't dictate which flow
variations will be realized for a particular uc
instance. These flow variations depend on the
actor's behavior at each point in the uc. This
will be demonstrated using sequence diagrams
in the "Defining Interactions" section.

Defining System Control

Activity flow definition would not be
complete without addressing the activities
performed by internal controllers. For the
Fuel Pump, the discrete aspects of control
(such as sending an activation signal to the
remote fuel tank pump), are easily addressed
as part of the lower-level sequence diagrams
to follow. The continuous aspect of control,
in which a metering valve is progressively
closed upon nearing a prepaid amount, may be
addressed by elaborating the "Pump" state
with an activity diagram. Figure 5 shows an
activity diagram for the "Pump" state.

Pump act activity 'Pump act' {1/1}

Enable Metering
<<controlOperator>>

{stream }

{stream }

Meter Flow

Yes

Yes

<<continuous >>
Valve Position

{stream }

{stream } Valve
Position
= 0

No

No

Pumping
<< continuous>>

Valve Closed

Valve Closed

Release Handle

Figure 5. Pump Activity Diagram

The dashed line in Figure 5 represents an
interruptable region; releasing the Fuel Nozzle
causes immediate exit of the Pump state.
SysML's rate stereotype is applied to indicate
Pumping as a <<continuous>> activity.
SysML's <<controlOperator>> stereotype is
applied to the Enable Metering Activity,
which determines whether or not metering of
the flow is required. The
<<controlOperator>> is continuous per
SysML convention (OMG 2006). If metering
is required, the Meter Flow activity calculates
the appropriate Valve Position; otherwise
Valve Position is set to 0, or wide open. The

Valve Position object is fed to the Pumping
activity. If the Valve closes completely, the
Pre-paid amount has been reached, causing a
transition out of the Pump state.
 Figure 6 reveals the details of the
<<controlOperator>> Enable Metering. If the
Prepaid Amount minus the Dollars Pumped is
less than $1.00, the Control Value is set to
enable; otherwise, it is disable. This causes
the flow to be metered only when nearing the
Prepaid Amount.

<<controlOperator>>
act Enable Metering

Prepaid Amount Dollars Pumped

Prepaid Amount -
Dollars Pumped <

$ 1.00 ?

 { stream }

 { stream }

enable
<< ValueSpecAction >> << ValueSpecAction >>

disable

Yes

Yes No

No

Control Value

Figure 6. Enable Metering Activity
Diagram

Figure 7 reveals the details of how the
commanded Valve Position is calculated. The
Flow Meter signal has been used to tally the
Dollars Pumped. Valve Position = 1 -
(Prepaid Amount - Dollars Pumped). This
formula reveals that the Valve closes in a

continuous linear fashion as remaining Dollars
to be pumped falls from $1.00 to $0.00.

act Meter Flow

Prepaid Amount

Flow Meter

Dollars Pumped

Calculate Valve Position :
1 - (PrepaidAmount - Dollars Pumped)

Valve Position

 { stream }

 { stream }

Figure 7. Meter Flow Activity Diagram

Defining Interactions

At this point, we have demonstrated high
level activity flow definition, including
tracking a system's state, and defining system
control. For the high level activity flow
already demonstrated, it remains to define the
interactions between the actors and the
system. It also remains to demonstrate
interactions between parts of the system
(Overgaard, 1999). Table 4 show the
strengths and weaknesses of sequence and
activity diagrams for defining interactions.
Figure 8 shows a sequence diagram.

Table 4. Strengths (S) and Weaknesses (S)
of Behavior Diagrams for Defining

Interactions

Sequence Diagrams

S

• Cleanly defines sequence of
interactions as time marches
vertically down the page.

• Cleanly defines messages or
operations along horizontal lines.

• Allows for depiction of actions
performed in-between interactions.

• Allows for depiction of element
states in-between interactions.

W o Eliciting continuous interaction is
awkward.

Activity Diagrams

S

• Shows interactions in the context
of activities being performed.

• Continuous interaction maybe
demonstrated using {stream}
stereotype.

W

o Requires usage of swimlanes to
identify source & recipient
elements, which can make spatial
arrangement of complex flow
awkward.

o Requires use of additional object
blocks and lines to show item
flow, which can clutter a diagram.

Both sequence and activity diagrams can

serve to define interaction as well as activity
flow, but the sd defines interactions more
naturally. Sequence Diagrams cleanly define
a sequence of interactions as time marches
vertically down the page. They also cleanly
define messages or operations along
horizontal lines. On the other hand, activity
diagrams require Swimlanes (to allocate
behavior) and Data Flow Objects (to show
messages or operation calls) to define
interactions (Long, 1995). Swimlanes in ad's
interfere with the ability to cleanly split a flow
for alternate or concurrent activity. If each of
the split flow paths include activities

performed by the same elements, spatial
arrangement becomes awkward. Activity
diagram Data Flow Objects may also clutter a
diagram.
 For these reasons, sd's have been
chosen to define interactions for our example
case. The sd's weakness in eliciting complex
flow is a non-factor in this case, since the Fuel
Pump state transitions involve non-complex
sequences of activities. Figure 8 elicits the
activity flow and interactions for each of the
possible transitions between the Idle State and
the Authorized State of the Fuel Pump system.
The appearance of the <<subject>> system
'Fuel Pump' and actors as lifeline blocks
indicates this sd elicits external interactions.
 The "alt" construct is used to
differentiate between the 'Clerk Activated'
transition, and the 'Credit/Debit Card'
transition. The similarity of the 'Credit Card'
and 'Debit Card' transitions in the smd allow
them to be addressed together here. The "alt"
construct is also used to differentiate a
successful versus unsuccessful Card
Authorization, and two different Clerk
Activation alternatives.

State Symbols are used on the sd to
show the connection to the smd. As all the
alternatives begin in the Idle State, the "Idle"
state symbol is shown as the first state on the
'Gas Pump' lifeline. At each point in the flow
where a change of state occurs, the new state
is indicated on the lifeline. A successful
instance of the 'Obtain Authorization' uc
results in the 'Authorized' State.

The 'Credit/Debit Card' alternative
begins with the 'Fuel Pump' in the Idle state
sending a message to the Operator to swipe
their credit or debit card. The operator
transfers their card information to the FP by
swiping the card, and the FP forwards the
information to a Financial Institution.
Depending on the status of the card account,
the Financial institution returns an "approved"
or "disapproved" message to the Pump. If
"approved", the FP requests the Operator to

select a fuel grade and transitions the Pump to
the 'Authorized' state; if "disapproved" the
Pump sends a message to the Operator
indicating an invalid account. If the card was
"approved", the FP must store how
authorization occurred in "memory", to
properly control behavior later in the flow.

In the same manner, sd's may be created for
the remainder of the transitions, completing
the definition of flow activity and
corresponding interactions at the system level
for the 'Get Fuel' uc.

sd Get Fuel /Authorization sd interaction 'Get Fuel /
Authorization sd'

{1/1}

Finance Inst

Clerk
<<actor>>

Fuel Pump
<<subject>>

Operator
<<actor>>

alt Prepay

alt Approved

alt Credit/Debit Card

Authorized

Idle

Authorized

Idle

alt Clerk Activatedalt Clerk Activated

Sw ipe CardSw ipe Card

 'Please sw ipe Credit or Debit Card'() 'Please sw ipe Credit or Debit Card'()

Credit Card InformationCredit Card Information

DisapprovedDisapproved

Approved()Approved()

Please select fuel gradePlease select fuel grade

Disapproved()Disapproved()

Sorry, Inactive AccountSorry, Inactive Account

Please activate my PumpPlease activate my Pump
Activate()Activate()

Please select fuel gradePlease select fuel grade

«»<Memory>
Car Authorized

«»<<Memory>>
Clerk Authorize

alt Trust Activatedalt Trust Activated

Payment()Payment()
Prepaid AmtPrepaid Amt

«»<<Memory>> Prepaid Amt

Figure 8. Authorization Sequence Diagram

Allocating Responsibility

Now that system level behavior has been
defined, the next step is to formulate a
structure for the system. The sequence
diagrams provide a guide for modeling the
structure. To start, we know that the system
needs a component which is able to handle
each interaction between itself and an actor
(Friedenthal, 2006). Furthermore, the system
needs the capacity to transform each
interaction input into the proper output,
whether it is an internal output to another part

of the system, or an external output to another
actor.

 Defining structure is outside the scope
of this paper. However, a few parts will be
defined to allow for demonstration of internal
interactions and allocation. These parts
include a Computer Motherboard (with a
built-in Network Card and other I/O ports), a
Transaction Display, and a Card Reader.
These are the only Fuel Pump parts necessary
to define the internal interactions for the
Authorization activities for the given level.

sd Internal / Card Authorization sd interaction 'Internal / Card
Authorization sd'

{1/1}

Motherboard

Card Reader

Transaction Display

alt Approved

Please sw ipe MsgPlease sw ipe Msg

Please sw ipe MsgPlease sw ipe Msg Sw ipe Card MagneticSw ipe Card Magnetic

Sw ipe Card BinarySw ipe Card Binary

Convert Magnetic to Binary

Encrypted Card InfoEncrypted Card Info

Encrypt Card Info

alt Disapprovedalt Disapproved

Approved()Approved()

Please select fuel gradePlease select fuel grade
Please select fuel gradePlease select fuel grade

Disapproved()Disapproved()
Sorry, Inactive AccountSorry, Inactive Account

Sorry, Inactive AccountSorry, Inactive Account

Generate Idle Msg

Display Msg on LCD

Process Receipt

Figure 9. Card Authorization Sequence Diagram

The same diagrams used to define

external interactions are used to define
internal interactions. Figure 9 displays an
"internal" sequence diagram which conforms
to the external Authorization sd. This sd is
simply a decomposition of the 'Fuel Pump' sd
in Figure 8. The messages coming in-and-out
of the Pump from Figure 8 should match the
messages coming in-and-out of Figure 9.

Allocations are implicitly performed as
part of the process of defining internal

interactions. Notice that "Action Blocks" such
as 'Generate Idle Message' and 'Convert
Magnetic to Binary' have been included on
some of the lifelines. Those actions which
don't map directly to system functional
requirements would be classified as Derived
Requirements, as they are lower-level
functions required for the system to
accomplish its system-level behavior.

req Card Authorization packag'Requirements {1/1}

<< requirement>>
CardAuthorization

«» Text = "The fuel pump shall
allow self-service operations
through the use of a credit or
debit card.

<<requirement >>
Environment

«»Text= "The fuel pump shall
operate from -20 to 110
degrees Fahre nheit."

<< requirement ,>>
MagneticReader

«» Text = "The fuel pump shall
contain a device which reads
a standard magnetic card
when the card is inserted and
removed swif tly."

<<requirement>>

DigitalConverter

«»Text= "The CardReader
shall convert the
magnetic pulses to
digital ones and zeros".

<< block >>
Magnetic Reader

<<block>>

Digital Converter_

<<block>>

CardReader

<<satisfy>><<satisfy>>

<<requirement>>

<<refine>>

CardReaderInterface

<<interfaceRqmt>>

'Text="The CardReader
shall interface to the
Motherboard."

<< deriveReqt>><< deriveReqt>> <<deriveReqt>><<deriveReqt>>

<< satisfy >><< satisfy >> <<satisfy >><<satisfy >>

Obtain
Authorization

Figure 10. Card Authorization Requirements Diagram

Along with allocation of actions to

structure, interactions must be allocated to
structure. Interactions are allocated to

interfaces, until each message or flow between
components is realized by an interface
specification. By tracing through a complete

set of interaction diagrams, and ensuring that
each flow input and output is allocated to an
interface, the SE is assured to capture all the
interfaces.

 Figure 10 shows a Requirements
Diagram which demonstrates the allocation of
actions and interactions to structural elements
using the <<satisfy>> construct. Also shown
is traceability of derived requirements to
system requirements. The "Obtain
Authorization" uc has been used to
<<refine>> the Card Authorization
requirement. Modeling of the uc resulted in
the MagneticReader <<derived>>
requirement, and a CardReader <<block>>
which <<satisfies>> this derived requirement.
Generation of the Card Reader and
Motherboard components led to the creation
of the CardReaderInterface
<<interfaceSpecification>>. This led to the
DigitalConverter derived requirement, and a
DigitalConverter component of the Card
Reader to satisfy the new requirement. The
Card Reader block is also shown as needing to
satisfy a system-wide environmental
requirement.

Conclusions

Behavioral Diagrams are a key Pillar of
the SysML language. Utilizing common
visual constructs, they provide a means of
visualizing behavior from an actor's
perspective down through a detailed design
perspective. They lay the framework for
defining the structure of the system which can
execute the intended behavior. Due to the
wide variety of systems which may be
addressed using SysML, no fixed
methodology of applying behavioral diagrams
is likely to work for all systems. An
understanding of the strengths and weakness
of each diagrams should guide the SE in
achieving the purposes of the Behavioral
Pillar.

 The Use Case Diagram is primarily
useful in managing complexity by focusing

the SE on one scenario at-a-time. Activity
flow definition may be accomplished through
various combinations of act's, smd's, and sd's.
Act's and smd's are better than sd's for
defining complex flows. For systems with
states, smd's play a vital role. Ad's are
preferred for defining continuous control
activity. Sd's are preferred for defining
interactions with actors and internal
components. Sd's cleanly allocate behavior to
structural parts and identify messages flow,
setting the stage for structural block diagrams,
internal block diagrams, and interface
specifications.

References

Bennett, Simon; Skelton, John; Lunn, Ken,
Schaum's Outlines UML Second Edition.
McGraw-Hill Intl, 2001.

Booch, Grady; Rumbaugh, James; Jacobson,
Ivar, The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

Friedenthal, Sanford; Moore, Alan; Steiner,
Rick, "OMG Systems Modeling Language
Tutorial", Object Management Group, July
11, 2006.

Long, James E., "Relationships Between
Common Graphical Representations Used
in Systems Engineering", NCOSE
Symposium, 1995.

OMG SysML Specification, Object
Management Group, May 4, 2006

Overgaard, Gunnar; Bran, Selic; Bock,
Conrad, "Object Modeling with UML:
Behavioral Modeling Powerpoint
Tutorial", Object Management Group,
1999.

Biography

Larry Zdanis currently works at Northrop
Grumman AEW/EW in Bethpage New York
as a Systems Software Engineer. He has
completed the requirements for a M.S. in
Systems Engineering from Stevens Institute of
Technology, Hoboken, NJ. In 1997, he

obtained a M.S. in Mechanical/Aerospace
Engineering at the Joint Institute for the
Advancement of Flight Sciences (JIAFS), a
collaborative between George Washington
University and NASA Langley.

Robert Cloutier received his Ph.D. in
Systems Engineering from Stevens Institute of
Technology. He currently is a Principal
Systems Engineer in Moorestown, NJ. He is
responsible for developing and modeling
architectures for complex systems, and has
over 20 years experience in systems
engineering, software engineering, and project
management in both commercial and defense
industries.

Rob also has an M.B.A. from Eastern
College, and a B.S. from the United States
Naval Academy. He is an Industry Fellow at
Stevens Institute of Technology and an
Adjunct Professor for Eastern University. He
is a member of the International Council on
Systems Engineering (INCOSE) and active in
the Delaware Valley Chapter, an active
member of the Association of Enterprise
Architects, and is a member of IEEE. Rob also
chairs the Rowan University Electrical and
Computer Engineering Department Industry
Advisory Board.

