Regular Paper

The Concept of Reference Architectures

Robert Cloutier,"” Gerrit Muller,” Dinesh Verma,' Roshanak Nilchiani,' Eirik Hole,' and Mary Bone'

'School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030

’Embedded Systems nstitute, Eindhoven, Netherlands

Received 4 March 2008; Revised 12 August 2008; Accepted 23 October 2008, after one or more revisions
Published online 22 January 2009 in Wiley InterScience (www.interscience.wiley.com)

DOI 10.1002/sys.20129

ABSTRACT

The concept of Reference Architectures is novel in the business world. However, many architects active in
the creation of complex systems frequently use the term Reference Architecture. Yet, these experienced
architects do not collectively have a consistent notion of what constitutes a Reference Architecture, what
is the value of maintaining the Reference Architecture, what is the best approach to visualizing a Reference
Architecture, what is the most appropriate level of abstraction, and how should an architect make use of
the Reference Architecture in their work? This paper examines current Reference Architectures and the
driving forces behind development of them to come to a collective conclusion on what a Reference
Architecture should truly be. It will be shown that a Reference Architecture captures the accumulated
architectural knowledge of thousands man-years of work. This knowledge ranges from why (market
segmentation, value chain, customer key drivers, application), what (systems, key performance parame-
ters, system interfaces, functionality, variability), to how (design views and diagrams, essential design
patterns, main concepts). The purpose of the Reference Architecture is to provide guidance for future
developments. The Reference Architecture incorporates the vision and strategy for the future. The
Reference Architecture is a reference for the hundreds of teams related to ongoing developments. By
providing this reference all these teams have a shared baseline of why, what and how. It is the authors’
goal that this paper will facilitate further research in the concepts and ideas presented herein. © 2009
Wiley Periodicals, Inc. Syst Eng 13: 14-27, 2010

Key words: reference architecture; pattern; system architecture; architecture framework; interoperability

1. INTRODUCTION

There is a fair amount of literature on Reference Architec-
tures, though much of it is for the software engineering
audience, inconsistent, and not systems engineering oriented.
Although the idea of a Reference Architecture has become a
known concept, the form that Reference Architecture will take
is still not solidified. The lack of maturity of the term “Refer-

*Author to whom all correspondence should be addressed (e-mail:
robert.cloutier @stevens.edu).
T Present address: Buskerud University College, Kongsberg, Norway

Systems Engineering Vol. 13, No. 1, 2010
© 2009 Wiley Periodicals, Inc.

14

ence Architecture” can be seen by the small number of articles
and books that address this specific topic from a systems
engineering perspective.

This paper will help to solidify the concept of a Reference
Architecture from a systems engineering point of view. The
authors will also attempt to lay down a foundation for how a
Reference Architecture can be identified. While discussing
how to identify a Reference Architecture, a brief discussion
on how to recognize patterns will be given. The idea of
patterns plays a large role in Reference Architecture. One
definition states a Reference Architecture is [Reed, 2002]:

According to RUP (Rational Unified Process), a Reference
Architecture: ...is, in essence, a predefined architectural pat-
tern, or set of patterns, possible partially or completely instan-

tiated, designed, and proven for use in particular business and
technical contexts, together with supporting artifacts to en-
able their use. Often, these artifacts are harvested from pre-
vious projects.

As mentioned earlier, this is a Reference Architecture
definition from a software perspective and does not represent
the “whole of the system.” However, it does bring together
the notion of Reference Architectures, patterns and reuse.

This paper was inspired by the System Architecture Fo-
rum,! co-hosted by Stevens Institute and the Embedded Sys-
tems Institute twice a year. Each forum has a theme to be
discussed by the attending system architects. Much of this
paper documents the discussion and findings from one such
meeting, where the theme was Reference Architectures: What
are they, and what is the value of a Reference Architecture?
This meeting was attended by several architects from the
defense domain and the commercial equipment domain who
offered presentations based on their experiences using and/or
creating Reference Architectures.

This paper begins by exploring current Reference Archi-
tectures and definitions. Then, it moves on to explore what
the driving factors are for developing these Reference Archi-
tectures. The paper will next go into describing how the idea
of a Reference Architecture can be solidified. During this
discussion the concepts of patterns are explored in detail and
the concept of abstraction is described. The mining and dis-
covery of patterns, and the implicit and explicit knowledge in
an architecture are discussed as essential topics in Reference
Architecture. The importance of transforming implicit knowl-
edge to explicit knowledge in system architecture is dis-
cussed. Patterns are presented as a powerful tool to capture
the implicit knowledge for Reference Architectures. Finally,
the paper will end with a summary and recommendations for
continued study of this topic.

2. DEFINITIONS

A number of terms related to system architecture are in use
today. It often becomes difficult to communicate using terms
that are used imprecisely and with varying frames of refer-
ence. One such word is “architecture.” The online Merriam-
Webster dictionary states that it is:

1: the art or science of building; specifically: the art or
practice of designing and building structures and espe-
cially habitable ones

2 a: formation or construction resulting from or as if
from a conscious act <the architecture of the garden>

lSystem Architecture Forum is a loose, multinational collection of architects
from various business enterprises—Ilarge and small. Representatives come
from defense industries, medical system designers, communications, and
research institutes. The goal of the System Architecture forum is to share
architecture best practices and emerging research among the participants.
http://www.architectingforum.org/
Zhttp://www.merriam-webster.com/dictionary/architecture

THE CONCEPT OF REFERENCE ARCHITECTURES 15

b: a unifying or coherent form or structure <the novel
lacks architecture>

Today, even political speeches and political comebacks are
said to have an architect and an architecture. However, in
engineering context, if one were to apply the definiton cited
above, the art or science of building, then one can easily
extend architecture to the designing and building of any
complex system. Where possible, this paper will use termi-
nology that has been broadly vetted and adopted by profes-
sional organizations or authored works and, therefore, stands
the test of time to provide the basis for clarity for the remain-
der of this paper. The defintions chosen here are not a com-
plete list of terms that will be used in this paper but a selection
of terms that the authors felt needed to be explicity stated so
that no confusion would arise later as to their usage in this

paper:

Architect: The person, team, or organization responsible
for systems architecture [IEEE 1471, 2000].

Architecture: The fundamental organization of a system
embodied in its components, their relationships to each
other, and to the environment, and the principles guid-
ing its design and evolution [IEEE 1471, 2000].

Architecture Framework: An architecture framework
provides guidance and rules for structuring, class-
ifying, and organizing architectures [DoDAF, 2007].

Design Pattern: A design pattern systematically names,
motivates, and explains a general design that addresses
arecurring design problem in a system. It describes the
problem, the solution, when to apply the solution, and
its consequences. It also gives implementation hints
and examples. The solution is customized and imple-
mented to solve the problem in a particular context
[Gamma et al., 1995].

Explicit Knowledge: information that has been shared
and even possibly documented, for the use of others.

Implicit Knowledge: information known by an individ-
ual, hidden in the realizations, or spread over a group
of individuals, but not shared or documented for the use
of others.

Perspective: the posture from which an observer may be
analyzing a problem. For instance, a system may be
analyzed from a developer’s perspective, a systems
engineer’s perspective, or even a lifecycle perspective.

System: A system is a construct or collection of different
elements that together produce results not obtainable
by the elements alone. The elements, or parts, can
include people, hardware, software, facilities, policies,
and documents, that is, all things required to produce
systems-level results. The results include system level
qualities, properties, characteristics, functions, behav-
ior and performance. The value added by the system as
a whole, beyond that contributed independently by the
parts, is primarily created by the relationship among the
parts; that is, how they are interconnected [Maier and
Rechtin, 2000].

Systems Engineering DOI 10.1002/sys

16 CLOUTIER ET AL.

Systems Engineer: An engineer that practices an interdis-
ciplinary approach and means to enable the realization
of successful systems [INCOSE, 2000].

View: A representation of a whole system from the per-
spective of a related set of concerns [IEEE 1471, 2000].

Viewpoint: A specification of the conventions for con-
structing and using a view. A pattern or template from
which to develop individual views by establishing the
purposes and audience for a view and the techniques
for its creation and analysis [IEEE 1471, 2000].

3. THE CURRENT VIEW OF A REFERENCE
ARCHITECTURE

Although there are many instances in technical literature and
documents where the term “Reference Architecture” is used,
itis done so without a solid definition. For this reason the term
“Reference Architecture” has became a term to mean many
things to different people. For instance, Sun Computer states
that:

Sun’s Reference Architectures have been designed, tested,
tuned and documented, so you can reduce the complexity,
costs, and risks of deploying new technology in your enter-
prise. Before choosing to implement a Reference Architec-
ture, you can test a proof-of-concept system at a Sun Solution
Center. Sun’s Reference Architectures combine:

A documented multi-tiered architecture
Recommended technology products from Sun and other ven-
dors

® Architecture, sizing, and implementation guides

Another company, Burton Group Research and Advisory,*
has a product they have named ‘“Reference Architecture,’
which is “a proprietary knowledgebase built on Burton
Group’s research and real-world experience from hundreds of
global enterprise consulting engagements.” This tool claims
it incorporates the following principles: high-level statements
about the IT infrastructure that tie back to business goals,
organizational, environmental, and political context, and
drives Technical Positions and Templates.

BEA Systems provides a document that promises “a
worked design of an enterprise-wide service oriented archi-
tecture (SOA) implementation, with detailed architecture dia-
grams, component descriptions, detailed requirements,
design patterns, opinions about standards, patterns on regula-
tion compliance, standards templates, and potential code as-
sets from members”.>

From these descriptions, one can see how varied the defi-
nition of “Reference Architecture” is used. While in the Sun’s
Reference Architecture their focus is on technology and im-
plementation, the Burton Group Research and Advisory Ref-
erence Architecture is more focused on business goals. Yet, in
the third, BEA Systems, Reference Architecture focuses on

3http://www.sun.com/service/refarch/
4http://www.burtongroup.com/research_consulting/ref_architecture.asp
Shttp://dev2dev.bea.com/2006/09/SOAPGPart2.pdf

Systems Engineering DOI 10.1002/sys

“detailed” requirements and “detailed” architecture. These
examples could go on and on with how the term “Reference
Architecture” is used differently by people, either within the
same industry or not.

These split views of a Reference Architecture can be
further seen in today’s practice, where the term Reference
Architectures is used for very different entities. The IT world
uses the term Reference Architecture often for the infrastruc-
tural concepts, for example, for layering, communication and
persistency. See, for example, Simmons [2005] and Reed
[2002]. The definition® provided by Wikipedia starts with
general terminology, and then narrows to IT.

At Philips Medical System the term Reference Architec-
ture has been used for a much higher level domain under-
standing. In Muller [2004] a Reference Architecture is
discussed that provides guidelines for function allocation over
products based on technology, life-cycle, safety and informa-
tion characteristics. As shown here, a Reference Architecture
is created with a certain scope in mind, e.g., a domain of a set
of applications. In this scope the Reference Architecture links
to relevant standards, legislation, domain constraints, and
mandatory frameworks.

To further explore how Reference Architecture is currently
viewed, this paper will discuss a couple of existing Reference
Architectures in various domains and highlight some key
characteristics of each Reference Architecture. No judgment
is made in this section on whether these examples are good
examples of a Reference Architecture. The examples are
provided purely as a baseline for how different industries
currently use and define a Reference Architecture. Although
in Section 5 the authors will address the concept of creating
a well-defined and valued Reference Architecture.

3.1. Reference Architecture for Space Data
Systems

This is a draft recommended practice prepared by the Con-
sultative Committee for Space Data Systems, dated January
2007 [CCSDS, 2007]. It is being prepared for NASA. Some
of the member agencies participating include Agenzia Spaz-
iale Italiana (ASI)/Italy, Canadian Space Agency (CSA)/Can-
ada, European Space Agency (ESA)/Europe, and the Instituto
Nacional de Pesquisas Espaciais (INPE)/Brazil. The docu-
ment is 107 pages in length and opens with a scope statement:

This document presents a Reference Architecture for Space
Data Systems (RASDS). The RASDS is intended to provide
a standardized approach for description of data system archi-
tectures and high-level designs, which individual Consult-
ative Committee for Space Data Systems (CCSDS) working
groups may use within CCSDS. This approach is aligned with
best current practices in the fields of system and software
architecture and is specifically adapted for the space domain.

A Reference Architecture provides a proven template solution for an archi-
tecture for a particular domain. It also provides a common vocabulary with
which to discuss implementations, often with the aim to stress commonality.
7A Reference Architecture often consists of a list of functions and some
indication of their interfaces (or APIs) and interactions with each other and
with functions located outside of the scope of the Reference Architecture.

While it is intended for use within CCSDS it is also suitable
for use by mission and project design teams, to describe
system architectures and designs within the space domain.

More importantly, under the rationale section of the Space
Systems Reference Architecture, the Reference Architecture
cites numerous international standards, to include the ISO
Reference Model for Open Distributed Processing [ISO/IEC
10746-1, 2004], the Recommended Practice for Architectural
Descriptions of Software-Intensive Systems [I[EEE 1471,
2000] and Standard for Application and Management of the
System Engineering Process [IEEE 1220, 2005]. Then, the
Reference Architecture goes on to state that those standards
all assume the elements of systems are fixed in place and are
in continuous communication over what are nominally error
free communications channels that suffer only occasional
disruptions and that assumption is not valid for space data
systems.

3.2. An Information Technology Security
Architecture for the State of Arizona

This Security Architecture is part of a broader effort to provide
a statewide roadmap of technology to meet the State of
Arizona’s mission. In the executive summary (see State of
Arizona), the Security Architecture cites the higher-level
guidance for Reference Architectures provided by the GITA
(a statewide IT agency). These guidelines may provide some
good insight into the purpose of any Reference Architecture
under development:

The following ten general principles provide the frame-
work for defining the baseline and target architectures within
the technical domains:

1. Architectures must be appropriately scoped, planned,
and defined based on the intended use of the architec-
ture.

2. Architectures must be compliant with the law as
expressed by legislative mandates, executive orders,
State and Federal regulations.

3. Architectures facilitate change.

4. Enterprise architectures must reflect the Governor’s
Strategic Plan, The Statewide IT Strategic Plan and
the Agency’s Three-year IT Plan.

5. Architectures continuously change and require tran-
sition.

6. Target architectures should project no more than 3 to
5 years in the future.

7. Architectures provide for a standardization of busi-
ness processes and common operating IT environ-
ments.

8. Architecture products are only as good as the data
collected from subject matter experts and domain
Oowners.

9. Architectures minimize the burden of data collection,
streamline data storage, and enhance data access.

10. Target architectures are used to control the growth of
technical diversity.

THE CONCEPT OF REFERENCE ARCHITECTURES 17

4. DRIVING FORCES FOR A REFERENCE
ARCHITECTURE

From the previous sections, it is clear that companies and
industries are using what they call “Reference Architectures,”
although the examples given above show that currently Ref-
erence Architecture can have varying meaning. While review-
ing these examples of Reference Architectures, one can
construct a full mental picture of what constitutes a Reference
Architecture. Based on that mental picture, the following
working definition, as put forth by the authors, for a Reference
Architecture might stand scrutiny:

Reference Architectures capture the essence of existing archi-
tectures, and the vision of future needs and evolution to
provide guidance to assist in developing new system architec-
tures.

This definition attempts to take into account all the driving
forces for identifying a Reference Architecture which were
used to develop the examples in this paper and many others
that were reviewed while studying the topic of Reference
Architecture. This section will identify those driving forces
behind the development of current Reference Architectures to
give more solidity to the definition just put forth, and the
driving forces that the authors believe are lacking from current
Reference Architectures but are imperative for the creation of
a good Reference Architecture will be discussed and justified.

Many of these driving forces were identified through a
chaotic discussion at the System Architectures Forum and
were captured in a structured graph detailing the main objec-
tives of a Reference Architecture (see Fig. 1). While many of
these objectives are architecture objectives, they are even
more relevant to reference architectures due to the increased
scope of reference architectures. Figure 1 captures the con-
current trends of increased complexity and increased integra-
tion dynamics, and the objectives of Reference Architectures
as reaction to these trends. These main objectives are achieved
by more detailed objectives of Reference Architectures,
shown at the right hand side of the graph of objectives.

4.1. The “Multi” Effect

During the aforementioned System Architecture Forum, it
became clear that in all domains there were two simultaneous
emerging trends that drive the development of a Reference
Architecture:

e Increasing complexity, scope, and size of the system of
interest, its context, and the organizations creating the
system

e Increasing dynamics and integration: shorter time to
market, more interoperability, rapid changes, and adap-
tations in the field.

These trends cause a transition from “simple” closed sys-
tem creation to distributed open system creation and evolu-
tion. In the simple and closed situation, a system could be
created at one location, by one vendor, in one organizational
entity. Many of today’s systems are developed as distributed

Systems Engineering DOI 10.1002/sys

18 CLOUTIER ET AL.

increased
complexity
scope <

products
product lines
product portfolio

Effectively create new:

size

Facilitate
multi-site

ﬁﬁﬂiﬁ

managingsynergy

providing guidance, e.g. architecture
principles, best practices

providing an architecture baseline and an
architecture blueprint

capturing and sharing (architectural) patterns

multi-organization
multi-vendor

1 providing a common lexiconandtaxonomy

multi-*

[providing modularization and the

system creation and
life-cycle support

increased

dynamics Achieve interoperability

integration between many different |
and evolving systems

| complementary context

Articulation of domain andrealization
concepts

Explicit modelingof functionsandqualities

Explicit decisionsaboutcompatibility,

1providinga common (architectural) vision |
upgradeandinterchangeability. ‘

abovesystems level

Figure 1. Graph of objectives of Reference Architectures. [Color figure can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]

open development at multiple locations (“multisite”), by mul-
tiple vendors, across multiple organizations. The aggregate
size of the developing organizations typically is in the order
of hundreds or thousands of people working in teams of 100
or more team members that may be divided over 10 or more
locations. These numbers are representative of many defense,
telecommunications, health care, and semiconductor teams.

Refer back to Figure 1 and note the use of the word “multi.”
This was due to the multiplicity not being limited to organi-
zations, vendors, and locations. Systems also become more
multi-domain (e.g., security has military as well as civil
applications), multiapplication (e.g., electron microscopes are
used for metrology in high volume applications and for ma-
terial analysis in low volume applications), multicultural
(global application, but customized for local cultural aspects)
development and manufacturing is based more often on mul-
tisourcing, and so on.

Reference Architectures start to appear in organizations
where the multiplicity reaches a critical mass triggering a need
to facilitate product creation and life-cycle support in this
distributed open world. The Reference Architecture provides:

e acommon lexicon and taxonomy
e a common (architectural) vision
e modularization and the complementary context.

The common lexicon and taxonomy facilitates communi-
cation across the multiple dimensions. The common (archi-
tectural) vision focuses and aligns efforts of multiple peoples
and teams. Modularization helps to divide the effort, where
the context information ensures later integration.

4.2, Effective Creation of Products, Products
Lines, and Product Portfolios

Another driving factor for the creation of a Reference Archi-

tecture is to improve the effectiveness of creating products,
product lines and product portfolios by:

Systems Engineering DOI 10.1002/sys

managing synergy

providing guidance, e.g., architecture principles, best

practices

e providing an architecture baseline and an architecture
blueprint

e capturing and sharing (architectural) patterns.

Managing synergy is often the main goal of Reference
Architectures from managerial perspective. It should be noted
that maximization of synergy is not the goal of Reference
Architectures. However, a good Reference Architecture helps
in understanding where synergy can be harvested effectively
and where harvesting of synergy might backfire. The insight
that harvesting synergy is not always trivial has been formu-
lated by Doug Mcllroy [1968] at the 1968 NATO Conference
about Software Engineering.

Reflection of experiences can be captured in architecture
principles and best practices. This condensed, somewhat ab-
stract, know-how provides guidance to later developments,
hopefully preventing the reoccurrence of bad experiences
over and over again. More concrete know-how can be mined
by looking for architectural patterns. A pattern is a well
working solution for a common problem that is described in
terms of what circumstances and context this solution is
appropriate.

The effectiveness is also improved by providing an archi-
tecture baseline, a shared starting point to discuss future
changes and extensions. The Reference Architecture serves as
an architecture pattern for future architectures. This helps
prevent the reinvention and revalidation of solutions for al-
ready solved problems.

4.3. Achieving Interoperability between Many
Different and Evolving Systems

In this “multi” world (e.g., multiple vendors, multiple con-
tractors) interoperability determines the usability, perform-

ance, and dependability of user level applications. Reference
Architectures are used to improve interoperability by:

Articulation of domain and realization concepts
Explicit modeling of functions and qualities above sys-
tems level

e Explicit decisions about compatibility, upgrade, and
interchangeability.

Decreased integration cost and time might also be an
objective of Reference Architectures. Note that all interoper-
ability considerations are also applicable to reduction of
integration cost and time. Note also that for reuse to be
effective, it is required that integration effort must be small.

4.4. Mission, Vision, Strategy

A Reference Architecture is strongly linked to company (or
consortium, e.g., Mobile Industry Processor Interface) mis-
sion, vision, and strategy. The strategy determines what mul-
tidimensions have to be addressed, what the scope of the
Reference Architecture is, what means, such as synergy, are
available to realize mission and vision. In fact, a Reference
Architecture is an elaboration of mission, vision and strategy,
as shown in Figure 2.

Reference Architecture Principle 1: A Reference Architec-
ture is an elaboration of company (or consortium) mission,
vision, and strategy. Such Reference Architecture facilitates a
shared understanding across multiple products, organiza-
tions, and disciplines about the current architecture and the
vision on the future direction.

4.5. Linking Past and Future

A Reference Architecture can also be developed to facilitate
a shared understanding across multiple products, organiza-
tions, and disciplines about current architecture(s) and future
directions. Proven architectures of past and existing products
are transformed in a Reference Architecture. However, the
purpose of the Reference Architecture is future oriented—that
is, to provide guidance for future implementations. This for-

mission
£
©
—)
vision ©
o
o]
o
strate [} Reference
9y Architecture
guidance
' : ~ for future
multiple <<
organizations | |

Figure 2. Business architecture, technical architecture and customer
context together form the Reference Architecture. [Color figure can
be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

THE CONCEPT OF REFERENCE ARCHITECTURES 19

ward looking application is performed by initially using the
Reference Architecture as the basis for future products, and
then modifying the actual new product implementation by
applying the new product mission, vision, and strategy to the
wisdom of the past.

5. REFERENCE ARCHITECTURE UNFOLDED

Many architecture descriptions that are labeled as a Reference
Architecture only describe the technical architecture. The
participants of the System Architecture Forum meeting men-
tioned earlier in this paper concluded that a Reference Archi-
tecture should address:

e Technical architecture
e Business architecture
e Customer context.

In practice, business architecture and customer context are
often missing (see Rosen [2007]). As a consequence, these
technical Reference Architectures represent solutions for un-
specified problems in unspecified contexts. Figure 3 shows
the business architecture, the technical architecture, and the
customer context as partially overlapping. The common de-
nominator is the requirement or black box specification level,
where the features and functions are modeled in a product
independent way. In practice, business architecture and cus-
tomer context are often missing (see Rosen [2007]). As a
consequence these technical Reference Architectures repre-
sent solutions for unspecified problems in unspecified con-
texts. Figure 3 shows the business architecture, the technical
architecture, and the customer context as partially overlap-
ping. The only common denominator is the requirements or
black box specification level, where the features and functions
are modeled in a product independent way. The technical
architecture provides solutions in technology, captured as
design patterns. The business models and life cycle consid-
erations in the business architecture guide decisions in the
technical domain. The same holds for the customer context,
where processes in the customer enterprise and user consid-
erations will provide this guidance. Guidance from the Ref-

" customer context " / technical architecture

requirements
black box view

customer enterprise design patterns

relations
users technology

s _gﬁance
S ;V P

business model
life cycle

\ business architecture /

Figure 3. Business architecture, technical architecture and customer
context together form the Reference Architecture. [Color figure can
be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

Systems Engineering DOI 10.1002/sys

20 CLOUTIER ET AL.

erence Architecture is largely based on the explicit under-
standing of the relations between the business architecture,
the technical architecture, and the customer context.

The level of abstraction of a Reference Architecture makes
it more difficult to understand their role. Figure 4 shows the
instantiations that are needed to transform an abstract Refer-
ence Architecture into actual systems. The first step is to
instantiate a system architecture based on the Reference Ar-
chitecture. This system architecture is used to design and
engineer the system, resulting in engineering documentation
that describes how the system can actually be ordered, assem-
bled and tested. This also demonstrated the difference be-
tween system architecture and Reference Architecture. A
System Architecture is focused on a limited class of systems,
both in product positioning as well as positioning in time. In
comparison a Reference Architecture is much broader in
scope, capturing the commonalities and essence. As a conse-
quence, Reference Architecture may ignore many specific
variations that serve well-defined market needs but that don’t
provide much reusable insights.

From Figure 4 note that the creation and evolution of
Reference Architectures is strongly feedback based. Field
feedback from actual systems results in updates of the engi-
neering documentation. The design and engineering effort
provides constraints on architectures, but also opens opportu-
nities. Finally the Reference Architecture itself is largely a
mining and extraction effort of existing architectures (whether
the mining is done from implicit or explicit knowledge of
relevant architectures).

The reuse or asset sharing dimension plays a role besides
the instantiation dimension. If a product family is created,
then we will instantiate a family architecture from the Refer-
ence Architecture. A family architecture describes the mem-
bers of the product family and the mechanisms in the family
to specialize members into the desired direction. The family
architecture also describes the synergy within the product
family and the associated rules for design, such as stand-
ardization. The shared assets often get a lot of focus, resulting
in an architecture describing the shared assets (or platform).

design and
engineer

system
architecture

family architecture

architect

reference
architecture

shared asset
architecture

system system
A B

product family

| oo
Eared assea
L

In practice the term Reference Architecture is sometimes
incorrectly used for family architecture and/or shared assets
architecture. The role of a Reference Architecture is related to
the instantiation flow as shown in Figure 4. Some people see
the Reference Architecture as an asset capturing generalized
knowledge of systems. This view of Reference Architectures
positions the Reference Architecture in the area of knowledge
management. This specification asset is seen as essential to
effectively deploy a reuse strategy of actual design artifacts.
As discussed earlier in the Reference Architecture contributes
to communication effectiveness and provides guidance for
future architecture instantiations.

5.1. Uncovering and Documenting Reference
Architectures

There are common elements in each of the example Reference
Architectures. Based on the small sampling, some of the
common elements include: business purpose, standards, guid-
ance for implementing, and roadmap. The Reference Archi-
tecture captures previous experience through mining and
generalizing existing architectures; this will be discussed at
more depth in the next section regarding Pattern Concepts. To
be of value for future architectures, a Reference Architecture
is based on proven concepts. The validation of concepts in
Reference Architectures is often derived from preceding ar-
chitectures. Especially in cases where disruptive technologies
or innovative applications are introduced, it is challenging to
have sufficient proof for a Reference Architecture. In these
cases Reference Implementations and prototyping and an
incremental approach might be an alternative for validation
and proof. Note that flaws in Reference Architectures propa-
gate to multiple architectures and actual systems and may
damage or even destroy in that way entire enterprises.

Reference Architecture Principle 2: A Reference Architec-
ture is based on concepts proven in practice. Most often
preceding architectures are mined for these proven concepts.
For architecture renovation and innovation validation and

build and
test

./

extracting constraints and field feedback
essentials opportunities
reference architectures engineering actual systems
architecture documentation

Figure 4. Reference Architectures are very abstract. In several instantiation steps a Reference Architecture is transformed into an actual
system(s). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Systems Engineering DOI 10.1002/sys

proof can be based on reference implementations and proto-
typing.

The future value of Reference Architecture depends on the
vision going into it. This vision is based on (future) customer
and business needs. These needs are explored and analyzed
to be transformed into future requirements for the product
portfolio. Figure 6 (subsection 5.3) shows this flow of proven
concepts and known problems from existing architectures and
vision derived from needs into the Reference Architecture.
The Reference Architecture guides the evolution of existing
architectures and influences the customers and business,
which triggers new changes in their needs. Architectures,
needs and Reference Architectures evolve continuously.
Often, this is handled as a function of the architecture man-
agement process. Evolution of the Reference Architecture is
managed through versioning of the published reference archi-
tectures.

5.1.1. Pattern Concepts

From Figure 5 one of the inputs into a Reference Architecture
are architecture patterns. This discussion would therefore not
be complete without discussing the concept of patterns.

While patterns are not a new concept and have been used
by a number of engineering disciplines for many years, the
concept was recently extended to systems engineering and
complex systems. The system architecture pattern is defined
as ahigh-level structure, appropriate to the design of the major
components of a system, expressing the relation between the
context, a problem, and a solution, documenting attributes,
and usage guidance. They are time-proven in solving prob-
lems similar in nature to the problem under consideration. We
will return to this definition later when we discuss Reference
Architectures [Cloutier, 2006].

One of the key concepts for any successful pattern is that
of separation. This concept allows the pattern documenter to
separate the idea from the reality, capturing more generalized
concepts when documenting the pattern. Another key concept
is abstraction—the notion of removing detail from something
complex to make it simpler to understand. Said differently,
abstraction is the extraction of the “essence” to make some-

customer needs
business needs

P existing architectures

exploration &

LU "analysis

\ J

essence product portfolio

architecture patterns future requirements

proven concepts & vision
known problems

Figure 5. Inputs of a Reference Architecture. [Color figure can be
viewed in the online issue, which is available at www.inter-
science.wiley.com.]

guides evolution

triggers new changes

Reference
Architecture

THE CONCEPT OF REFERENCE ARCHITECTURES 21

thing that is complex, more easily understood. While extract-
ing the essence and removing the less relevant details, the art
of abstraction is to keep the essential details to convey the true
meaning. Many poor architects indeed simply leave out de-
tails and create “empty” abstractions.

For instance, if one were to say they are talking on the
phone, the concept of phone has been generalized. The lis-
tener does not know, nor care, whether they are talking on a
portable phone, a cell phone, or a satellite phone. The details
of what kind of phone have been abstracted out of the descrip-
tion of the phone call.

Abstraction is a very useful concept in describing complex
constructs. However, in the practice of architecture, the chal-
lenge is finding the appropriate level of abstraction to describe
the system being architected. Abstraction might be thought of
as a continuum with multiple levels as the description is
further refined. Therefore, the appropriate level of abstraction
for a pattern is that level where the details of design can be
implemented in a number of ways that still adheres to the
intent of the pattern, and yet the pattern provides significant
guidance on how that aspect should be architected.

Another valuable pattern concept within the software com-
munity is the rule of three, first identified by Ralph Johnson,
which states that a pattern is not a pattern unless there are at
least three independent, observable applications utilizing the
proposed pattern as part of the solution. Brad Appleton, in his
Web-based treatise “Patterns and Software: Essential Con-
cepts and Terminology,” states that there are some in the
software patterns community that believe it is inappropriate
to identify a solution as a pattern until that proposed pattern
is vetted, or scrutinized, by others [Appleton, 2000]. It is
interesting to note that some pattern practitioners actually feel
it is inappropriate to decisively call something a pattern until
it has undergone some degree of scrutiny or “peer review” by
others. This scrutiny should give the user of the pattern some
confidence in the completeness and appropriateness of the
pattern, which may also reduce risk in a system employing
the applied pattern. Once a pattern is identified and believed
to be of use in the future, it should be documented.

If a pattern must be observed in three or more applications,
then patterns cannot be invented. They “are not created from
a blank page; they are mined” [Hanmer and Kocan, 2004].
When discussing design patterns, over time, similar designs
are arrived at independently by different designers on various
projects. As it becomes apparent that the same design elements
exist in multiple designs, the design can be studied and docu-
mented to encourage reuse. This reuse “prevents the reinvention
of the same concept, and provides a vocabulary for the design
concepts that a project can share” [Sanz and Zalewski, 2003].
However, until patterns are mined and made explicit, they cannot
be used widely and consciously. Note that many designers use a
rich collection of patterns implicitly.

5.1.2. Implicit and Explicit Architectural Knowledge

Though one can attain advanced degrees in systems engineer-
ing, there are many systems engineers today that do not have
a formal systems engineering degree. Instead, they have ac-
quired experience and knowledge to be called a systems
engineer by working on a number of development projects
and by being able to think about how parts of the system

Systems Engineering DOI 10.1002/sys

22 CLOUTIER ET AL.

interact, both positively and negatively, with one another.
Within industry and government, a growing number of prac-
ticing architects have acquired considerable architecture ex-
pertise via formal or informal mentoring and experience in
the work environment. This corporate systems knowledge is
captured in explicit ways through mediums such as hand-
books, lessons learned repositories, templates and tools,
methods and practices, and metrics and measures.

5.1.2.1. Implicit Knowledge. A significant component of
this corporate knowledge, however, is implicit, undocu-
mented, and largely represented through the technical leaders
within an organization. This implicit knowledge is useful to
others only if it is shared in a manner that allows its applica-
tion. The holder of that implicit knowledge may become a
bottleneck in applying systems experience on current or fu-
ture projects [Hole, 2005]. The same holds true for knowledge
that is reused from project to project in the form of undocu-
mented or informal patterns.

The real power and value of a pattern is derived only if it
can be packaged for use by others. If the pattern is not
documented (written down), it may increase the possibility
that the complete pattern will not be implemented the next
time it is used—something may be forgotten or inadvertently
left out. Formalizing patterns through documentation helps to
ensure their usage by others, their management as assets, their
application in an appropriate manner, and that they are im-
proved over time.

5.1.2.2. Explicit Knowledge. Hahsler [2004] may be the
only documented, quantitative source in documenting that the
use of patterns improved communications between members
of the architecture and design teams though patterns and
heuristics are cited as serving to improve communications
between teams [Rechtin, 1991; Maier and Rechtin, 2000].
Hahsler also found that patterns facilitated the application of
sound architectural concepts and implementations. The sound
architectural concepts identified by Hahsler were the software
patterns documented by Gamma et al. [1995]. As the disci-
pline of systems architecting assumes the challenge of devel-
oping increasingly complex systems, there is a need for a
common lexicon between systems architects. Describing ar-
chitectures in the context of known and understood patterns
should foster better and more consistent understanding across
the many stakeholder communities. Systems architecture pat-
terns may also enable implementation of common design
features across systems (reuse) leading to enhanced R&D
efficiency, and lower ownership costs through reduced efforts
with regard to system testing, integration, and maintenance.

5.1.3. Capturing Implicit Knowledge with Patterns

Patterns offer a formal method of documentation to capture
aspects of such knowledge. If a pattern exists only in the form
of implicit knowledge, it is not accessible by others and cannot
be used by others without some form of repeated storytelling
to convey the pattern to others by the holder of this knowledge
[Cloutier and Verma, 2006].

While a pattern is reusable by the person who first recog-
nizes it, the real power and value of a pattern is derived only
if it can be packaged for use by others. Patterns can be
transferred through examples, such as storytelling, or through
informal or formal forms of documentation. Storytelling is

Systems Engineering DOI 10.1002/sys

one of the oldest and most proven methods of know-how
transfer. The disadvantage of working by example is that
concepts, and therefore the more fundamental know-how is
not transferred. Contemporary examples of transferring by
example are the so-called cookbooks; see, for example,
Martelli and Ascher [2005]. This can be remedied by making
the concepts more explicit. Informal documentation is appro-
priate for a broad set of stakeholders because the threshold to
access the information is low.

More formal forms of documentation are appropriate in
more narrow groups of stakeholders that share the same
formalisms, because the information can be transferred more
accurately and reliably. If the pattern is not formally docu-
mented, it may increase the possibility that the complete
pattern will not be implemented the next time it is used—
something may be forgotten or inadvertently left out. Formal-
izing patterns through documentation helps to ensure their
usage by others, their management as assets their application
in an appropriate manner, and their improvement over time.

5.1.4. From Patterns to Reference Architectures

One of the goals of Reference Architectures is to capture
implicit knowledge to facilitate the development of news
products and product families. Patterns are one of the means
to document Reference Architectures, since patterns are well
recognized for their capability to make implicit knowledge
explicit. As stated in 5.1.2.1, patterns are only valuable if they
can be used by others, while 5.1.2.2 emphasizes the commu-
nication value of patterns, where communication is also one
of the main purposes of Reference Architectures. Also note
that we use the concept of a pattern in Systems Engineering
in a broader sense than the notion of pattern in Software
Engineering. The common denominator is that patterns link
common problems, to proven solutions providing a rationale
related to the circumstances.

5.2. Aspects of the Reference Architecture

Another input into a Reference Architecture from Figure 5 is
the essence of the architecture, the most significant and rele-
vant aspects. A Reference Architecture can be supported by
more detailed models, API’s, standards, etc. The challenge is
to create an easily readable, accessible Reference Architecture
that at the same time is nonambiguous and effective for all
stakeholders.

The size of Reference Architecture is domain and objective
dependent. Attempts to find a metric for the size resulted in
lots of discussions at the Systems Architecture Forum. Many
existing Reference Architectures are very big (hundreds or
even thousands of pages). The risk of big Reference Architec-
tures is that the essence is hidden instead of highlighted. A
countermeasure for big Reference Architectures is to decom-
pose it into a core Reference Architecture and more detailed
models, interfaces, standards, etc. Also, navigational support
can improve accessibility.

Reference Architectures are often associated with big and
inflexible frameworks; see, for example, the nice contribution
in Martin [2003].

Content and structure of Reference Architectures is deter-
mined by domains and objectives. Typically a limited set

(about 6) of aspects or cross cutting concerns or attributes are
captured in the Reference Architecture. For example, one of
the presented Reference Architectures captures the following
6 aspects:

e Timeliness/responsiveness of system (real time vs. off
line)

Security considerations

Degree of automation (machine vs. man)

Legacy retention/interoperability and integration/test
Life cycle concerns (Costs, “ilities’)

COTS content.

Domain-specific tensions between cross cutting concerns
determine the specific selection of architecture patterns.

5.3. Applying and Adapting Reference
Architectures

Reference Architectures must be actively managed by the
organization to ensure that they are updated based on the
evolution of the governing standards, emerging technology,
changing stakeholder requirements and maturing business.
Figure 6 attempts to capture the development cycle of a
Reference Architecture.

Once developed, a Reference Architecture has a life-cycle
and maturity. Reference Architectures should evolve continu-
ously and must be actively maintained and re-factored. Fi-
nally, Architecture Management and Governance involves the
total set of activities from existing architectures to Reference
Architecture’s patterns and to the creation of new architecture
implementations.

From Figure 6 one can also see the relationship between
the architecture content documented using a Reference Archi-

THE CONCEPT OF REFERENCE ARCHITECTURES 23

tecture and Architecture Framework, e.g., DODAF, MoDAF,
or Zachman [1987]. The Architecture Framework captures
knowledge about the methodology to create and document
architectures. The methodology knowledge ranges from
views (purpose, stakeholders, concerns), representations
(e.g., class diagrams, activity diagrams), tools, to methods
(decomposition in tasks, ordering, and guidelines). These
frameworks make a step in the meta-direction: “How to
architect?” An architecture framework is comparable to a
document template: It provides rules and guidelines for layout
and style, and it might provide some decomposition and
ordering of content. However, templates don’t provide actual
content. In contrast, Reference Architectures heavily focus on
content. Reference architectures may use architecture frame-
works, as seen in Figure 6, but it might well be that a
Reference Architecture captures some highly domain specific
diagrams not present in any of the more general purpose
architecture frameworks.

5.4. Managing the Reference Architecture

A Reference Architecture must be accessible and under-
standable for multiple stakeholders from engineers to busi-
ness managers and customers. Therefore, the Reference
Architecture must be concrete and provide specific informa-
tion. The challenge is to create a Reference Architecture that
is generic for multiple architectures and that is concrete and
contains specific information at the same time.

This may seem in conflict with the goal of a reusable
Reference Architecture, but current examples that are similar
to this can be found in the work-flow for brain examinations
in MRI scanners which are very specific and concrete yet they
are reused over many generations of MRI scanners. Another
example is the wafer handling and the wafer characteristics

Architecture Management & Governance

<
More
Existing 4 Abstract
Reference
Systems / Architecture
Documented _ 4
System A using an Applied
Standards Use
System B \ =
T Architecture
System C el Mined for Pattems
b
System D
v Use
Architecture Architecture
Framework
« DoDAF Specific
* Zachman Architecture
« FEAF Implementation
* Other

¥ Less
Abstract

Figure 6. Reference Architecture Development. [Color figure can be viewed in the online issue, which is available at www.inter-

science.wiley.com.]

Systems Engineering DOI 10.1002/sys

24 CLOUTIER ET AL.

are very concrete and specific but again are reused over
generations of wafer scanners.

The Chief Architect (Business plus Technical) owns the
Reference Architecture. Ownership is a critical success factor
for a Reference Architecture. Sponsorship of business man-
agers for Reference Architectures is a prerequisite. Such
sponsorship works only if the Reference Architecture pro-
vides value for the business, for example as a decision making
tool for business leaders.

Reference Architectures are often related to organization
structures. This relationship between organization and archi-
tecture is already a heated subject of discussion for actual
architectures:

e Should the architecture follow the organization struc-
ture, or vice versa?

e Should we compromise architectural integrity to align
better with the organization?

e Or, should we adapt the organization to serve the de-
sired architecture?

We have already noted that Reference Architectures often
span multiple organizations, complicating this issue even
more. The maturity of the organization, the architects, and the
architecture is one of the selection criteria. The most mature
entity will be normally be leading. Growth over time may
result in changes in the leading entity.

The position of Reference Architectures as elaboration of
mission, vision and strategy, suggests that Reference Archi-
tectures (ought to) play a significant role at enterprise level.
This triggers a number of questions as well:

e What policy makers or boards should be involved with
Reference Architectures?

e What policy processes and planning tools relate to
Reference Architectures?

e Or, in summary, how are Reference Architectures em-
bedded in the enterprise?

5.5. Value of Reference Architectures

Up to this point, the authors have looked at what constitutes
a Reference Architecture, and how a Reference Architecture
may be applied. However, why is it important to have a
Reference Architecture? What is the value of a Reference
Architecture when time is required of critical resources, chief
architects, for the creation and maintenance of a Reference
Architecture? What is the value of Reference Architectures
that justify the investment? No actual data on the value of
Reference Architectures exist today. If Reference Architec-
tures are not perceived as valuable, then they are an easy target
for cost reduction. Currently, there are no indicators to meas-
ure the value of Reference Architectures. Nevertheless, the
sanity of Reference Architectures requires some kind of feed-
back loop, which in turn requires some indicators or metrics
of Reference Architectures. An example of such a metric may
be derived of an experienced benefit in project organizations
is faster and better creation of bid proposals. Other identified
value propositions for architecture patterns [Cloutier, 2006]

Systems Engineering DOI 10.1002/sys

also seem applicable to Reference Architectures. They are
listed below:

O Knowledge Management: Enables reuse of good
concepts and implementations, and to preserve them
for future projects.

O Control Complexity: Architectural patterns may
help in controlling the complexity of an architecture
by standardizing it on a well-known and practiced
pattern.

O Common Understanding: Describing parts of the
architecture in the context of known and understood
architecture patterns results in a common under-
standing of the architecture.

O Mitigate Risks: Using and applying known archi-
tecture patterns in architecture design introduce less
risk than a new architecture design.

5.5.1. An Industrial View on the Value of the Reference
Architecture

The participants in the Systems Architecture Forum identified
the following points as justification for using Reference Ar-
chitectures in industry. Note that these points are consistent
with the value propositions from the previous section.

e Reuse and commonality throughout product lines as
well as product generation. The potential benefit of this
being shorter development cycles and reduced cost
from not having to start from scratch.

e Risk reduction is another potential benefit through the
use of proven and partly prequalified architectural ele-
ments. The general maturity and experience level asso-
ciated with a Reference Architecture also bears the
promise of a higher quality end product.

e Interoperability was highlighted as another major mo-
tivation for using Reference Architectures. This aspect
is quite different than the reuse aspect. The issue was
not using a Reference Architecture as a “template” in
which an architect is provided a head-start on a devel-
opment effort, but, instead, the Reference Architecture
was aimed at interoperability to improve compliance
for a given context.

e A third aspect that was discussed was the role of a
Reference Architecture as a knowledge repository
which facilitates knowledge transfer and communica-
tion. A Reference Architecture aids the understanding
of the basic architectural and design principles. A Ref-
erence Architecture can also serve as a framework and
lexicon of terms and naming conventions, as well as
structural relationships within a company, industry or a
domain.

e The final main aspect that was discussed, took an ac-
quisition point of view. An acquisition program backed
up by a strong Reference Architecture that ensures
interoperability and “form, fit, and function” compati-
bility promotes flexibility in the choice of suppliers, as
well as a lower risk through multisourcing.

6. SUMMARY AND RECOMMENDATIONS

Reference Architectures capture knowledge from existing
architectures. Based on an elaboration of mission, vision,
strategy, and on customer needs, the Reference Architecture
is transformed into an architecture that provides guidance to
multiple organizations that evolve or create new architectures.

Reference Architectures should address technical architec-
tures, business architectures, and context. One of the main
challenges is to make the inherently abstract Reference Ar-
chitecture concrete and understandable by providing suffi-
cient specific information and guidelines.

The value of Reference Architectures is foreseen in envi-
ronments with a high multiplicity factor creating social, or-
ganizational, business, application and technical complexity
(Figure 7).

With the increased interest in the concept of Reference
Architectures, there appears to be a few distinct advantages
for a company or organization to identify, document, and use
Reference Architectures. One of the advantages is to facilitate
reuse, and thereby harvest potential savings through reduced
cycle times, cost, risk and increased quality. Another advan-
tage is in the potential for increased interoperability, both
within corporations as well as within industries and domains.

Reference Architectures must be actively managed by the
organization. The management of the Reference Architec-
tures must ensure that they are updated based on the evolution
of the governing standards, emerging technology, changing
stakeholder requirements, and maturing business.

Recommended items for further study are:

1. There needs to be a better definition of the required
information for a Reference Architecture based on re-
search and comparative analysis of existing Reference
Architectures and applications of Reference Architec-
tures. Are the needs for documenting all Reference
Architectures created equal? Are the requirements for
documenting a space system drastically different than

/ A\
[technology |
customers

market

mission .
elaboration Reference
vision ;
Architecture

strategy B

guidance ‘opportunities K

O
s\q'b
N & A)
ﬁ’\ e ﬁ - VV\D
existing { multiple (newr?tr e\t/olved(]
. . architectures
\aEI'&ctures organizations d

Figure 7. Summary of the role of Reference Architectures, for
simplicity feedback loops are not shown. [Color figure can be viewed
in the online issue, which is available at www.inter-
science.wiley.com.]

THE CONCEPT OF REFERENCE ARCHITECTURES 25

that of a cell phone—or can the Reference Architecture

contents be generalized to apply to both?

2. Who is the intended audience of a Reference Architec-
ture? Some suggest that the business is the consumer
for strategic planning, and others assert that the con-
sumer of the Reference Architecture is the architect; but
they are generally the creators, and as such, know the
information implicitly. Finally, others believe the de-
signers are the real users. If it is all three, what is the
proper level of detail? Is that different if the user is only
the designer?

3. Asdiscussed here, the Reference Architecture seems to
be domain specific but this may be dependent on how
one defines domain. Reference Architectures like those
from Sun and BEA are defined for hardware or web
servers, while the Burton group is a generic Reference
Architecture for creating Reference Architectures, and
yet the Reference Architecture for Space System Data
Systems is clearly domain specific.

4. Currently, no quantitative data exists to support the
value assertions; they are based on anecdotal evidence.
Research should be initiated to prove or disprove the
overall value of Reference Architectures to businesses.
These observations trigger a set of questions:

e Is there an end-of-life for Reference Architectures?
Can we create a list of criteria to assess the maturity
or obsolescence of a Reference Architecture? Does
the notion of generation break exist for Reference
Architectures? Older Reference Architectures, well
embedded and aligned in the organizations, may
stifle changes and innovation. Disruptive technolo-
gies may kill the value of a Reference Architecture
suddenly.

e How to do change control or management of the
Reference Architecture? What is the level of for-
malization of a Reference Architecture? Which
stakeholders are involved in the change manage-
ment?

5. Crucial to future research is the development of metrics
to evaluate Reference Architectures. Reference Archi-
tecture reuse may be considered as a competitive edge,
a means of reusing or repurposing implicit knowledge
made explicit. However, further research needs to be
done to quantify the possible competitive edge.

REFERENCES

B. Appleton, Patterns and software, essential concepts and terminol-
ogy, http://www.cmcrossroads.com/bradapp/ docs/patternsin-
tro.html, accessed June 22, 2005.

CCSDS 311.0-R-1, Reference architecture for space data systems,
Draft Recommended Practice, Issue 1, Consultative Committee
for Space Data Systems, NASA, Houston, TX, January 2007.

R.J. Cloutier, Applicability of patterns to architecting complex sys-
tems, Doctoral Dissertation, Stevens Institute of Technology,
Hoboken, NJ, 2006.

Systems Engineering DOI 10.1002/sys

26 CLOUTIER ET AL.

R.J. Cloutier and D. Verma, Applying pattern concepts to systems
(enterprise) architecture, J Enterprise Architecture 2(2) (May
2006): 34-50.

DoDAF, Department of Defense Architecture Framework, Version
1.5, Volume 1, http://jitc.fhu.disa.mil/jitc_dri/pdfs/do-
daf_vlvl.pdf, accessed April 23, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object oriented software, Addison-Wesley,
Reading, MA, 1995.

R. Hanmer and K. Kocan, Documenting architectures with patterns,
Bell Labs Tech J 9(1) (2004), 143-163.

M. Habhsler, Free/open source software development, Koch Stefan
(Editor), Idea Group Publishing, 2004, 2005, pp. 103-124.

E. Hole, Architectures as a framework for effective and efficient
product development in a dynamic business environment, Proc
Third Annu Conf Syst Eng Res, March 2005.

INCOSE Systems Engineering Handbook 2a, Seattle, WA, 2000.

IEEE Std. 1471-2000, IEEE Recommended Practice for Architec-
tural Description of Software-Intensive Systems, IEEE Std.
1471-2000, IEEE, New York, 2000.

IEEE Std. 1220-2005, IEEE Standard for Application and Manage-
ment of the Systems Engineering Process, IEEE Std. 1220-2005,
IEEE, New York, 2005.

ISO/IEC 10746-1, RM-ODP ISO Reference Model for Open Dis-
tributed Processing (RM-ODP), 2004.

A. Martelli and D. Ascher, Python cookbook, O’Reilly, 2005.

R. Martin, Reference architecture, Uncle Bob’s software craftsman-
ship corner, October 2003 http://www.artima.com/we-
blogs/viewpost.jsp?thread=17799

Systems Engineering DOI 10.1002/sys

D. Mcllroy, Mass produced software components, Proc 1968 NATO
Conf Software Eng, October 1968, http://homepages.cs.ncl.
ac.uk/brian.randell/NATO/nato1968.PDF

G. Muller, CAFCR: A multi-view method for embedded systems
architecting; balancing genericity and specificity, Ph.D. thesis,
June 2004, retrieved from http://www.gaudisite.nl/Thesis-
Book.pdf, Chapter 14.

M. Maier and E. Rechtin, The art of systems architecting, 2nd
edition, CRC Press, Boca Raton, FL, 2000.

E. Rechtin, The art of systems architecting, Prentice Hall PTR,
Upper Saddle River, NJ, 1991.

P. Reed, Reference architecture: The best of best practices, IBM
developer works, September 2002, http://www-128.ibm.com/de-
veloperworks/rational/library/2774.html

M. Rosen, Enterprise architecture trends 2007: The year ahead,
Cutter Executive Report, September 2002, http://www.cut-
ter.com/offers/EAtrends.html

S. Simmons, Introducing the WebSphere integration reference archi-
tecture, IBM WebSphere Dev Tech J (August 2005), http://www-
128.ibm.com/developerworks/ websphere/techjournal/0508_
simmons/0508_simmons.html

R. Sanz and J. Zalewski, Pattern-based control systems engineering,
IEEE Control Syst Mag (June 2003), 43—-60.

State of Arizona Target Security Architecture Information Technol-
ogy (IT) Technical Document, Revision 2.0, dated April 5, 2004.
Downloaded from http://www.azgita.gov/ enterprise_architec-
ture/NEW/Security_Arch/ AZ_Target_Security_Architec-
ture.htm

J.Zachman, A framework for information systems architecture, IBM
Syst J 26(3) (1987), 276-290.

Rob Cloutier is an Associate Professor of systems engineering in the School of Systems and Enterprises at Stevens
Institute of Technology. He has over 20 years experience in systems engineering & architecting, software engineering,
and project management in both commercial and defense industries. Industry roles included lead avionics engineer,
chief enterprise architect, lead software engineer, and system architect on a number of efforts and proposals. His research
interests include model-based systems engineering and systems architecting using UML/SysML, reference architec-
tures, systems engineering patterns, and architecture management. Rob holds a B.S. from the US Naval Academy, an
MBA from Eastern College, and his Ph.D. in Systems Engineering from Stevens Institute of Technology.

Gerrit Muller received his Master’s degree in physics from the University of Amsterdam in 1979. He worked from 1980
until 1997 at Philips Medical Systems as a system architect, followed by two years at ASML as a manager of systems
engineering, returning to Philips (Research) in 1999. Since 2003 he has worked as a senior research fellow at the
Embedded Systems Institute in Eindhoven, focusing on developing system architecture methods and the education of
new system architects, receiving his doctorate in 2004. In January 2008 he accepted a full professor of systems
engineering appointment at Buskerud University College in Kongsberg, Norway.

THE CONCEPT OF REFERENCE ARCHITECTURES 27

Dinesh Vermareceived the Ph.D. and the M.S. in Industrial and Systems Engineering from Virginia Tech. He is currently
serving as Dean of the School of Systems and Enterprises and Professor in Systems Engineering at Stevens Institute of
Technology. During his six years at Stevens he as successfully proposed research and academic programs exceeding
$50m in value. Verma concurrently serves as Scientific Advisor to the Director of the Embedded Systems Institute in
Eindhoven, Holland. Prior to this role, he served as Technical Director at Lockheed Martin Undersea Systems, in
Manassas, Virginia, in the area of adapted systems and supportability engineering processes, methods and tools for
complex system development and integration. Verma continues to serve numerous companies in a consulting capacity,
to include Eastman Kodak, Lockheed Martin Corporation, L3 Communications, United Defense, Raytheon, IBM
Corporation, Sun Microsystems, SAIC, VOLVO Car Corporation (Sweden), NOKIA (Finland), RAMSE (Finland), TU
Delft (Holland), Johnson Controls, Ericsson-SAAB Avionics (Sweden), Varian Medical Systems (Finland), and
Motorola. Dr. Verma has authored over 100 technical papers, book reviews, technical monographs, and co-authored two
textbooks. He is a Fellow of the International Council on Systems Engineering (INCOSE), a senior member of SOLE,
and was elected to Sigma Xi, the honorary research society of America. He serves as on the Core Curriculum Committee
of the Delft University’s Space Systems Engineering Program (Holland) and as an advisor to the Systems Engineering
Center of Expertise at the Buskerud University College (Norway). He was honored with an Honorary Doctorate Degree
(Honoris Causa) in Technology and Design from Vixjo University (Sweden) in January 2007.

Dr. Roshanak Nilchiani is an Assistant Professor at the School of Systems and Enterprises at Stevens Institute of
Technology. She is currently working on physical and mathematical modeling of systems’ response to change. Her
research interests include Risk-Based Complex Engineering Systems Design and Operations, Modeling and Assessing
the Resilience of Infrastructure Systems, System of Systems Design, and Agile Systems and Enterprises. During her
time at MIT, Dr. Nilchiani performed research on flexible designs for DARPA’s Orbital Express system, direct
broadcasting satellites, and next generation Mars rovers. In addition she has served as a mission analysis and design
consultant for 4Frontiers, a commercial space travel company. Dr. Nilchiani received her Ph.D. in Aerospace Systems
from the Massachusetts Institute of Technology in 2005 and is an associate member of the New York Academy of
Sciences, and a member of the American Institute of Aeronautics and Astronautics.

Eirik Hole is a Lecturer in Systems Engineering and Engineering Management in the School f Systems and Enterprises
at Stevens Institute of Technology. Mr. Hole obtained his MSc (Dipl. Ing.) in Aerospace Engineering from the University
of Stuttgart, Germany in 1995. Before coming to Stevens in 2003, Mr. Hole spent 8 years in various systems engineering
related positions. He started his career on the systems engineering team for a new generation antiship missile system.
Here he was involved in system specification, overall system design, and the planning of major design reviews. He was
also engaged in systems engineering process improvement and the implementation of a systems engineering tool set.
Before coming to Stevens, Mr. Hole worked as a consultant in the area of applied systems engineering and requirements
management as well as on the practical application and implementation of systems engineering and requirements
management tools. His consulting experience includes customers from automotive, defense, and consumer goods
industry in Europe.

Mary Alice Bone has worked as a Systems Engineer for GE Transportation, BAE Systems, and Rockwell Collins. She
holds a B.S. in Aerospace Engineering from the University of Missouri—Rolla and a M. Eng. in Systems Engineering
from Iowa State University. She has been involved with internal company system process groups which has ignited the
interest in producing system requirement processes that resolve the struggle between system process and project process
while maintaining systems engineering integrity. She is currently pursuing a Ph.D. in Systems Engineering from Stevens
Institute of Technology.

Systems Engineering DOI 10.1002/sys

